
AltiVec Instruction Set
dss dss
Data Stream Stop

dss STRM (A=0) Form X
dssall STRM (A=1)

DataStreamPrefetchControl ← “stop” || STRM

Note that A does not represent rA in this instruction.

If A=0 and a data stream associated with the stream ID specified by STRM exists, this
instruction terminates prefetching of that data stream. It has no effect if the specified stream
does not exist.

If A=1, this instruction terminates prefetching of all existing data streams (the STRM field
is ignored.)

In addition, executing a dss instruction ensures that all accesses associated with data stream
prefetching caused by preceding dst and dstst instructions that specified the same stream ID
as that specified by the dss instruction (A=0), or by all preceding dst and dstst instructions
(A=1), will be in group G1 with respect to the memory barrier created by a subsequent sync
instruction, refer to Section 5.1, “PowerPC Shared Memory,” for more information.

See Section 5.2.1, “Software-Directed Prefetch” for more information on using the dss
instruction.

Other registers altered:

• None

Simplified mnemonics:

dss STRM equivalent to dss STRM, 0

dssall equivalent to dss 0, 1

For more information on the dss instruction, refer to Chapter 5, “Cache, Exceptions, and
Memory Management.”

31 A 0_0 STRM 0_0000 0000_0 822 0

0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 30 31
MOTOROLA Chapter 6. AltiVec Instructions 6-9

AltiVec Technology Programming Environments Manual
dst dst
Data Stream Touch

dst rA,rB,STRM (T=0) Form X
dstt rA,rB,STRM (T=1)

addr0:63 ← (rA)
DataStreamPrefetchControl ← “start” || STRM || T || (rB) || addr

This instruction initiates a software directed cache prefetch. The instruction is a hint to
hardware that performance will probably be improved if the cache blocks containing the
specified data stream are fetched into the data cache because the program will probably
soon load from the stream.

The instruction associates the data stream specified by the contents of rA and rB with the
stream ID specified by STRM. The instruction defines a data stream STRM as starting at
an effective address (rA) and having count units of size quad words separated by stride
bytes (as specified in rB). The T bit of the instruction indicates whether the data stream is
likely to be loaded from fairly frequently in the near future (T = 0) or to be transient and
referenced very few times (T = 1).

The dst instruction does the following:

• Defines the characteristics of a data stream STRM by the contents of rA and rB

• Associates the stream with a specified stream ID, STRM (Range for STRM is 0-3)

• Indicates that the data in the specified stream STRM starting at the address in rA
may soon be loaded

• Indicates whether memory locations within the stream are likely to be needed over
a longer period of time (T=0) or be treated as transient data (T=1)

• Terminates prefetching from any stream that was previously associated with the
specified stream ID, STRM.

31 T 0_0 STRM A B 342 0

0 5 6 7 8 9 10 11 15 16 20 21 30 31

0 1 2 3 4 5

StartingAddress

Block Size

BlockStride

BlockAddrn (n=3)

Memory

Stream

Block Block Block Block Block Block
6-10 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
The specified data stream is encoded for 32-bit follows:

• Effective address: rA, where rA ≠ 0

• Block size: rB[3–7] if rB[3–7] ≠ 0; otherwise 32

• Block count: rB[8–15] if rB[8–15] ≠ 0; otherwise 256

• Block stride: rB[16–31] if rB[16–31] ≠ 0; otherwise 32768

Other registers altered:

• None

Simplified mnemonics:

dst rA,rB,STRM equivalent to dst rA,rB,STRM,0

dstt rA,rB,STRM equivalent to dst rA,rB,STRM,1

For more information on the dst instruction, refer to Chapter 5, “Cache, Exceptions, and
Memory Management.”

 /// Block Size Block Count Block Stride

0 2 3 7 8 15 16 31
MOTOROLA Chapter 6. AltiVec Instructions 6-11

AltiVec Technology Programming Environments Manual
dstst dstst
Data Stream Touch for Store

dstst rA,rB,STRM (T=0) Form X
dststt rA,rB,STRM (T=1)

addr0:63 ← (rA)
DataStreamPrefetchControl ← “start” || T || static || (rB) || addr

This instruction initiates a software directed cache prefetch. The instruction is a hint to
hardware that performance will probably be improved if the cache blocks containing the
specified data stream are fetched into the data cache because the program will probably
soon write to (store into) the stream.

The instruction associates the data stream specified by the contents of rA and rB with the
stream ID specified by STRM. The instruction defines a data stream STRM as starting at
an effective address (rA) and having count units of size quad words separated by stride
bytes (as specified in rB). The T bit of the instruction indicates whether the data stream is
likely to be stored into fairly frequently in the near future (T = 0) or to be transient and
referenced very few times (T = 1).

The dstst instruction does the following:

• Defines the characteristics of a data stream STRM by the contents of rA and rB

• Associates the stream with a specified stream ID, STRM (Range for STRM is 0-3)

• Indicates that the data in the specified stream STRM starting at the address in rA
may soon be stored in to memory

• Indicates whether memory locations within the stream are likely to be stored into
fairly frequently in the near future (T=0) or be treated as transient data (T=1)

• Terminates prefetching from any stream that was previously associated with the
specified stream ID, STRM.

31 T 0_0 STRM A B 374 0

0 5 6 7 8 9 10 11 15 16 20 21 30 31

0 1 2 3 4 5

StartingAddress

Block Size

BlockStride

BlockAddrn (n=3)

Memory

Stream

Block Block Block Block Block Block
6-12 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
The specified data stream is encoded for 32-bit follows:

• Effective address: rA, where rA ≠ 0

• Block size: rB[3–7] if rB[3–7] ≠ 0; otherwise 32

• Block count: rB[8–15] if rB[8–15] ≠ 0; otherwise 256

• Block stride: rB[16–31] if rB[16–31] ≠ 0; otherwise 32768

Other registers altered:

• None

Simplified mnemonics:

dstst rA,rB,STRM equivalent to dstst rA,rB,STRM,0

dststt rA,rB,STRM equivalent to dstst rA,rB,STRM,1

For more information on the dstst instruction, refer to Chapter 5, “Cache, Exceptions, and
Memory Management.”

 /// Block Size Block Count Block Stride

0 2 3 7 8 1
5

1
6

31

Figure 6-1. Format of rB in dst instruction (32-bit)
MOTOROLA Chapter 6. AltiVec Instructions 6-13

AltiVec Technology Programming Environments Manual
lvebx lvebx
Load Vector Element Byte Indexed

lvebx vD,rA,rB Form X

• For 32-bit:

if rA=0 then b ← 0
else b ← (rA)
EA ← b + (rB)
eb ← EA28:31
vD ← undefined
if the processor is in big-endian mode
 then vDeb*8:(eb*8)+7← MEM(EA,1)
 else vD120-(eb*8):127-(eb*8)← MEM(EA,1)

— EA = (rA|0)+(rB); m = EA[28-31] (the offset of the byte in its aligned
quadword).

For big-endian mode, the byte addressed by EA is loaded into byte m of vD. In little-endian
mode, it is loaded into byte (15–m) of vD. Remaining bytes in vD are undefined.

Other registers altered:

• None

31 vD A B 7 0

0 5 6 10 11 15 16 20 21 30 31
6-14 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
Figure 6-2. Effects of Example Load/Store Instructions

x x x x

x x x x x x x x x x x x x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x x x x x x x x x

x x

x x

x x

x x

x x

x x

x x

x x

x x0x0000_0000

0x0000_0010

0x0000_0020

0x0000_0030

0x0000_0040

0x0000_0050

0x0000_0060

0x0000_0070

0x0000_0080

0x0000_0090

0x0000_00A0

0x0000_00B0

Byte at x1E

Half at x2A

Word at x54

Quad at A0

vR

vR

vR

vR

Load or Store:

Memory

x x x x x x x x x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x x x x x x x x x x x x x

x x

Note: In vector registers, x means boundedly undefined after a load and don’t care after a store. In memory, x means don’t care
after a load, and leave at current value after a store.
MOTOROLA Chapter 6. AltiVec Instructions 6-15

AltiVec Technology Programming Environments Manual
lvehx lvehx
Load Vector Element Half Word Indexed

lvehx vD,rA,rB Form X

• For 32-bit:

if rA=0 then b ← 0
else b ← (rA)
EA ← (b + (rB)) & (~1)
eb ← EA28:31
vD ← undefined
if the processor is in big-endian mode
 then vD(eb*8):(eb*8)+15← MEM(EA,2)
 else vD112-(eb*8):127-(eb*8)← MEM(EA,2)

— Let the EA be the result of ANDing the sum (rA|0)+(rB) with ~1. Let m =
EA[28-30]; m is the half-word offset of the half-word in its aligned quadword in
memory.

If the processor is in big-endian mode, the half-word addressed by EA is loaded into
half-word m of vD. If the processor is in little-endian mode, the half-word addressed by EA
is loaded into half-word (7-m) of vD. The remaining half-word s in vD are set to undefined
values. Figure 6-2 shows this instruction.

Other registers altered:

• None

31 vD A B 39 0

0 5 6 10 11 15 16 20 21 30 31
6-16 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
lvewx lvewx
Load Vector Element Word Indexed

lvewx vD,rA,rB Form X

• For 32-bit:

if rA=0 then b ← 0
else b ← (rA)
EA ← (b + (rB)) & (~3)
eb ← EA28:31
vD ← undefined
if the processor is in big-endian mode
 then vDeb*8:(eb*8)+31← MEM(EA,4)
 else vD96-(eb*8):127-(eb*8)← MEM(EA,4)

— Let the EA be the result of ANDing the sum (rA|0)+(rB) with ~3. Let m =
EA[28–29]; m is the word offset of the word in its aligned quadword in memory.

If the processor is in big-endian mode, the word addressed by EA is loaded into word m of
vD. If the processor is in little-endian mode, the word addressed by EA is loaded into word
(3-m) of vD. The remaining words in vD are set to undefined values. Figure 6-2 shows this
instruction.

Other registers altered:

• None

31 vD A B 71 0

0 5 6 10 11 15 16 20 21 30 31
MOTOROLA Chapter 6. AltiVec Instructions 6-17

AltiVec Technology Programming Environments Manual
lvsl lvsl
Load Vector for Shift Left

lvsl vD,rA,rB Form X

• For 32-bit:

if rA = 0 then b ← 0
 else b ← (rA)
addr0:31 ← b + (rB)
sh ← addr28-31
if sh = 0x0 then (vD)0:127 ← 0x000102030405060708090A0B0C0D0E0F
if sh = 0x1 then (vD)0:127 ← 0x0102030405060708090A0B0C0D0E0F10
if sh = 0x2 then (vD)0:127 ← 0x02030405060708090A0B0C0D0E0F1011
if sh = 0x3 then (vD)0:127 ← 0x030405060708090A0B0C0D0E0F101112
if sh = 0x4 then (vD)0:127 ← 0x0405060708090A0B0C0D0E0F10111213
if sh = 0x5 then (vD)0:127 ← 0x05060708090A0B0C0D0E0F1011121314
if sh = 0x6 then (vD)0:127 ← 0x060708090A0B0C0D0E0F101112131415
if sh = 0x7 then (vD)0:127 ← 0x0708090A0B0C0D0E0F10111213141516
if sh = 0x8 then (vD)0:127 ← 0x08090A0B0C0D0E0F1011121314151617
if sh = 0x9 then (vD)0:127 ← 0x090A0B0C0D0E0F101112131415161718
if sh = 0xA then (vD)0:127 ← 0x0A0B0C0D0E0F10111213141516171819
if sh = 0xB then (vD)0:127 ← 0x0B0C0D0E0F101112131415161718191A
if sh = 0xC then (vD)0:127 ← 0x0C0D0E0F101112131415161718191A1B
if sh = 0xD then (vD)0:127 ← 0x0D0E0F101112131415161718191A1B1C
if sh = 0xE then (vD)0:127 ← 0x0E0F101112131415161718191A1B1C1D
if sh = 0xF then (vD)0:127 ← 0x0F101112131415161718191A1B1C1D1E

— Let the EA be the sum (rA|0)+(rB). Let sh = EA[28–31].

Let X be the 32-byte value 0x00 || 0x01 || 0x02 || ... || 0x1E || 0x1F. Bytes sh:sh+15 of X are
placed into vD. Figure 6-3 shows how this instruction works.

Other registers altered:

• None

Figure 6-3. Load Vector for Shift Left

31 vD A B 6 0

0 5 6 10 11 15 16 20 21 30 31

0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B

rA0 0 0 0 0 0 0 8

rB

Temp

vD

0 0 0 0 0 0 0 4

0 0 0 0 0 0 0 CTable Lookup

+

=

6-18 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
The above lvsl instruction followed by a Vector Permute (vperm) would do a simulated
alignment of a four-element floating-point vector misaligned on quad-word boundary at
address 0x0....C.

Figure 6-4. Instruction vperm Used in Aligning Data

Refer, also, to the description of the lvsr instruction for suggested uses of the lvsl
instruction.

vCC D E F 10 11 12 13 14 15 16 17 18 19 1A 1B

vA

vB

vD

0 1 2 3 4 5 6 7 8 9 A B C D E F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
MOTOROLA Chapter 6. AltiVec Instructions 6-19

AltiVec Technology Programming Environments Manual
lvsr lvsr
Load Vector for Shift Right

lvsr vD,rA,rB Form X

• For 32-bit:

if rA = 0 then b ← 0
else b ← (rA)
EA ← b + (rB)
sh ← EA28:31
if sh=0x0 then vD ← 0x101112131415161718191A1B1C1D1E1F
if sh=0x1 then vD ← 0x0F101112131415161718191A1B1C1D1E
if sh=0x2 then vD ← 0x0E0F101112131415161718191A1B1C1D
if sh=0x3 then vD ← 0x0D0E0F101112131415161718191A1B1C
if sh=0x4 then vD ← 0x0C0D0E0F101112131415161718191A1B
if sh=0x5 then vD ← 0x0B0C0D0E0F101112131415161718191A
if sh=0x6 then vD ← 0x0A0B0C0D0E0F10111213141516171819
if sh=0x7 then vD ← 0x090A0B0C0D0E0F101112131415161718
if sh=0x8 then vD ← 0x08090A0B0C0D0E0F1011121314151617
if sh=0x9 then vD ← 0x0708090A0B0C0D0E0F10111213141516
if sh=0xA then vD ← 0x060708090A0B0C0D0E0F101112131415
if sh=0xB then vD ← 0x05060708090A0B0C0D0E0F1011121314
if sh=0xC then vD ← 0x0405060708090A0B0C0D0E0F10111213
if sh=0xD then vD ← 0x030405060708090A0B0C0D0E0F101112
if sh=0xE then vD ← 0x02030405060708090A0B0C0D0E0F1011
if sh=0xF then vD ← 0x0102030405060708090A0B0C0D0E0F10

— Let the EA be the sum (rA|0)+(rB). Let sh = EA[28–31].

Let X be the 32-byte value 0x00 || 0x01 || 0x02 || ... || 0x1E || 0x1F. Bytes (16-sh):(31-sh) of
X are placed into vD.

Note that lvsl and lvsr can be used to create the permute control vector to be used by a
subsequent vperm instruction. Let X and Y be the contents of vA and vB specified by the
vperm. The control vector created by lvsl causes the vperm to select the high-order 16
bytes of the result of shifting the 32-byte value X || Y left by sh bytes. The control vector
created by vsr causes the vperm to select the low-order 16 bytes of the result of shifting X
|| Y right by sh bytes.

These instructions can also be used to rotate or shift the contents of a vector register by sh
bytes. For rotating, the vector register to be rotated should be specified as both vA and vB
for vperm. For shifting left, the vB register for vperm should contain all zeros and vA
should contain the value to be shifted, and vice versa for shifting right. Figure 6-3 shows a
similar instruction only in that figure the shift is to the left

No other registers altered.

31 vD A B 38 0

0 5 6 10 11 15 16 20 21 30 31
6-20 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
lvx lvx
Load Vector Indexed

lvx vD,rA,rB (LRU = 0) Form X

• For 32-bitt:

if rA=0 then b ← 0
else b ← (rA)
EA ← (b + (rB)) & (~0xF)
if the processor is in big-endian mode
 then vD ← MEM(EA,16)
 else vD ← MEM(EA+8,8) || MEM(EA,8)

Let the EA be the result of ANDing the sum (rA|0)+(rB) with ~0xF.

If the processor is in big-endian mode, the quadword in memory addressed by EA is loaded
into vD.

If the processor is in little-endian mode, the doubleword addressed by EA is loaded into
vD[64–127] and the doubleword addressed by EA+8 is loaded into vD[0–63]. Note that
normal little-endian PowerPC address swizzling is also performed. See Section 3.1, “Data
Organization in Memory,” for more information.

Figure 6-3 shows this instruction.

Other registers altered:

• None

31 vD A B 103 0

0 5 6 10 11 15 16 20 21 30 31
MOTOROLA Chapter 6. AltiVec Instructions 6-21

AltiVec Technology Programming Environments Manual
lvxl lvxl
Load Vector Indexed LRU

lvxl vD,rA,rB (LRU = 1) Form X

• For 32-bit:

if rA=0 then b ← 0
else b ← (rA)
EA ← (b + (rB)) & (~0xF)
if the processor is in big-endian mode
 then vD ← MEM(EA,16)
 else vD ← MEM(EA+8,8) || MEM(EA,8)

Let the EA be the result of ANDing the sum (rA|0)+(rB) with ~0xF.

If the processor is in big-endian mode, the quadword addressed by EA is loaded into vD.

If the processor is in little-endian mode, the doubleword addressed by EA is loaded into
vD[64–127] and the doubleword addressed by EA+8 is loaded into vD[0–63]. Note that
normal little-endian PowerPC address swizzling is also performed. See Section 3.1, “Data
Organization in Memory,” for more information.

lvxl provides a hint that the program may not need quadword addressed by EA again soon.

Note that on some implementations, the hint provided by the lvxl instruction and the
corresponding hint provided by the Store Vector Indexed LRU (stvxl) instruction (see
Section 5.2.1.2, “Transient Streams”) are applied to the entire cache block containing the
specified quadword. On such implementations, the effect of the hint may be to cause that
cache block to be considered a likely candidate for reuse when space is needed in the cache
for a new block. Thus, on such implementations, the hint should be used with caution if the
cache block containing the quadword also contains data that may be needed by the program
in the near future. Also, the hint may be used before the last reference in a sequence of
references to the quadword if the subsequent references are likely to occur sufficiently soon
that the cache block containing the quadword is not likely to be displaced from the cache
before the last reference. Figure 6-3 shows this instruction.

Other registers altered:

• None

31 vD A B 359 0

0 5 6 10 11 15 16 20 21 30 31
6-22 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
mfvscr mfvscr
Move from Vector Status and Control Register

mfvscr vD Form VX

vD ← 960 || (VSCR)

The contents of the VSCR are placed into vD.

Note that the programmer should assume that mtvscr and mfvscr take substantially longer
to execute than other VX instructions

Other registers altered:

• None

04 vD 0_0000 0000_0 1540

0 5 6 10 11 15 16 20 21 31
MOTOROLA Chapter 6. AltiVec Instructions 6-23

AltiVec Technology Programming Environments Manual
mtvscr mtvscr
Move to Vector Status and Control Register

mtvscr vB Form VX

VSCR ← (vB)96:127

The contents of vB are placed into the VSCR.

Other registers altered:

• None

04 00_000 0_0000 vB 1604

0 5 6 10 11 15 16 20 21 31
6-24 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
stvebx stvebx
Store Vector Element Byte Indexed

stvebx vS,rA,rB Form X

• For 32-bit:

if rA=0 then b ← 0
else b ← (rA)
EA ← b + (rB)
eb ← EA28:31
if the processor is in big-endian mode
 then MEM(EA,1) ← (vS)eb*8:(eb*8)+7
 else MEM(EA,1) ← (vS)120-(eb*8):127-eb*8

— Let the EA be the sum (rA|0)+(rB). Let m = EA[28–31]; m is the byte offset of
the byte in its aligned quadword in memory.

If the processor is in big-endian mode, byte m of vS is stored into the byte in memory
addressed by EA. If the processor is in little-endian mode, byte (15-m) of vS is stored into
the byte addressed by EA. Figure 6-2 shows how a store instruction is performed for a
vector register.

Other registers altered:

• None

31 vS A B 135 0

0 5 6 10 11 15 16 20 21 30 31
MOTOROLA Chapter 6. AltiVec Instructions 6-25

AltiVec Technology Programming Environments Manual
stvehx stvehx
Store Vector Element Half Word Indexed

stvehx vS,rA,rB Form X

• For 32-bit:

if rA=0 then b ← 0
else b ← (rA)
EA ← (b + (rB)) & (~0x1)
eb ← EA28:31
if the processor is in big-endian mode
 then MEM(EA,2) ← (vS)eb*8:(eb*8)+15
 else MEM(EA,2) ← (vS)112-eb*8:127-(eb*8)

— Let the EA be the result of ANDing the sum (rA|0)+(rB) with ~0x1. Let m =
EA[28–30]; m is the half-word offset of the half-word in its aligned quadword in
memory.

If the processor is in big-endian mode, half-word m of vS is stored into the half-word
addressed by EA. If the processor is in little-endian mode, half-word (7-m) of vS is stored
into the half-word addressed by EA. Figure 6-2 shows how a store instruction is performed
for a vector register.

Other registers altered:

• None

31 vS A B 167 0

0 5 6 10 11 15 16 20 21 30 31
6-26 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
stvewx stvewx
Store Vector Element Word Indexed

stvewx vS,rA,rB Form X

• For 32-bit:

if rA=0 then b ← 0
else b ← (rA)
EA ← (b + (rB)) & 0xFFFF_FFFC
eb ← EA28:31
if the processor is in big-endian mode
 then MEM(EA,4) ← (vS)eb*8:(eb*8)+31
 else MEM(EA,4) ← (vS)96-eb*8:127-(eb*8)

— Let the EA be the result of ANDing the sum (rA|0)+(rB) with 0xFFFF_FFFC.
Let m = EA[28-29]; m is the word offset of the word in its aligned quadword in
memory.

If the processor is in big-endian mode, word m of vS is stored into the word addressed by
EA. If the processor is in little-endian mode, word (3-m) of vS is stored into the word
addressed by EA. Figure 6-2 shows how a store instruction is performed for a vector
register.

Other registers altered:

• None

31 vS A B 199 0

0 5 6 10 11 15 16 20 21 30 31
MOTOROLA Chapter 6. AltiVec Instructions 6-27

AltiVec Technology Programming Environments Manual
stvx stvx
Store Vector Indexed

stvx vS,rA,rB (LRU = 0) Form X

• For 32-bit:

if rA=0 then b ← 0
else b ← (rA)
EA ← (b + (rB)) & 0xFFFF_FFF0
if the processor is in big-endian mode
 then MEM(EA,16) ← (vS)
 else MEM(EA,16) ← (vS)64:127 || (vS)0:63

— Let the EA be the result of ANDing the sum (rA|0)+(rB) with 0xFFFF_FFF0.

If the processor is in big-endian mode, the contents of vS are stored into the quadword
addressed by EA. If the processor is in little-endian mode, the contents of vS[64–127] are
stored into the doubleword addressed by EA, and the contents of vS[0–63] are stored into
the doubleword addressed by EA+8.

stvxl and stvxlt provide a hint that the quadword addressed by EA will probably not be
needed again by the program in the near future.

Figure 6-2 shows how a store instruction is performed for a vector register.

Other registers altered:

• None

31 vS A B 231 0

0 5 6 10 11 15 16 20 21 30 31
6-28 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
stvxl stvxl
Store Vector Indexed LRU

stvxl vS,rA,rB (LRU = 1) Form X

• For 32-bit:
if rA=0 then b ← 0
else b ← (rA)
EA ← (b + (rB)) & 0xFFFF_FFF0
if the processor is in big-endian mode
 then MEM(EA,16) ← (vS)
 else MEM(EA,16) ← (vS)64:127 || (vS)0:63

— Let the EA be the result of ANDing the sum (rA|0)+(rB) with 0xFFFF_FFF0.

Let the EA be the result of ANDing the sum (rA|0)+(rB) with 0xFFFF_FFFF_FFFF_FFF0.
If the processor is in big-endian mode, the contents of vS are stored into the quadword
addressed by EA. If the processor is in little-endian mode, the contents of vS[64–127] are
stored into the doubleword addressed by EA, and the contents of vS[0–63] are stored into
the doubleword addressed by EA+8. The stvxl and stvxlt instructions provide a hint that
the quad word addressed by EA will probably not be needed again by the program in the
near future.

Note that on some implementations, the hint provided by the stvxl instruction (see
Section 5.2.2, “Prioritizing Cache Block Replacement”) is applied to the entire cache block
containing the specified quadword. On such implementations, the effect of the hint may be
to cause that cache block to be considered a likely candidate for reuse when space is needed
in the cache for a new block. Thus, on such implementations, the hint should be used with
caution if the cache block containing the quadword also contains data that may be needed
by the program in the near future. Also, the hint may be used before the last reference in a
sequence of references to the quadword if the subsequent references are likely to occur
sufficiently soon that the cache block containing the quadword is not likely to be displaced
from the cache before the last reference. Figure 6-2 shows how a store instruction is
performed on the vector registers.

Other registers altered:
• None

31 vS A B 487 0

0 5 6 10 11 15 16 20 21 30 31
MOTOROLA Chapter 6. AltiVec Instructions 6-29

AltiVec Technology Programming Environments Manual
vaddcuw vaddcuw
Vector Add Carryout Unsigned Word

vaddcuw vD,vA,vB Form VX

do i=0 to 127 by 32

aop0:32← ZeroExtend((vA)i:i+31,33)
bop0:32← ZeroExtend((vB)i:i+31,33)
temp0:32← aop0:32 +int bop0:32
vDi:i+31← ZeroExtend(temp0,32)

end

Each unsigned-integer word element in vA is added to the corresponding unsigned-integer
word element in vB. The carry out of bit 0 of the 32-bit sum is zero-extended to 32 bits and
placed into the corresponding word element of vD.

Other registers altered:

• None

Figure 6-5 shows the usage of the vaddcuw instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-5. vaddcuw—Determine Carries of Four Unsigned Integer Adds (32-Bit)

04 vD vA vB 384

0 5 6 10 11 15 16 20 21 31

vA

vB

33-bit Intermedediate

vD

+ + + +
6-30 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vaddfp vaddfp
Vector Add Floating Point

vaddfp vD,vA,vB Form VX

do i = 0,127,32

(vD)i:i+31 ← RndToNearFP32((vA)i:i+31 +fp (vB)i:i+31)

end

The four 32-bit floating-point values in vA are added to the four 32-bit floating-point values
in vB. The four intermediate results are rounded and placed in VD.

If VSCR[NJ] = 1, every denormalized operand element is truncated to a 0 of the same sign
before the operation is carried out, and each denormalized result element truncates to a 0 of
the same sign.

Other registers altered:

• None

Figure 6-6 shows the usage of the vaddfp instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-6. vaddfp—Add Four Floating-Point Elements (32-Bit)

04 vD vA vB 10

0 5 6 10 11 15 16 20 21 31

++++

vA

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-31

AltiVec Technology Programming Environments Manual
vaddsbs vaddsbs
Vector Add Signed Byte Saturate

vaddsbs vD,vA,vB Form VX

do i=0 to 127 by 8

aop0:8← SignExtend((vA)i:i+7,9)
bop0:8← SignExtend((vB)i:i+7,9)
temp0:8← aop0:8 +int bop0:8
vDi:i+7← SItoSIsat(temp0:8,8)

end

Each element of vaddsbs is a byte.

Each signed-integer element in vA is added to the corresponding signed-integer element
in vB.

If the sum is greater than (27-1) it saturates to (27-1) and if it is less than -27 it saturates to
-27. If saturation occurs, the SAT bit is set.

The signed-integer result is placed into the corresponding element of vD.

Other registers altered:

• Vector status and control register (VSCR):

Affected: SAT

Figure 6-7 shows the usage of the vaddsbs instruction. Each of the sixteen elements in the
vectors, vA, vB, and vD, is 8 bits long.

Figure 6-7. vaddsbs—Add Saturating Sixteen Signed Integer Elements (8-Bit)

04 vD vA vB 768

0 5 6 10 11 15 16 20 21 31

+ +++++++++++++++

vA

vB

vD
6-32 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vaddshs vaddshs
Vector Add Signed Half Word Saturate

vaddshs vD,vA,vB Form VX

do i=0 to 127 by 16

aop0:16← SignExtend((vA)i:i+15,16)
bop0:16← SignExtend((vB)i:i+15,16)
temp0:16← aop0:16 +int bop0:16
vDi:i+15← SItoSIsat(temp0:16,16)

end

Each element of vaddshs is a half word.

Each signed-integer element in vA is added to the corresponding signed-integer element
in vB.

If the sum is greater than (215-1) it saturates to (215-1) and if it is less than -215 it saturates to
-215. If saturation occurs, the SAT bit is set.

The signed-integer result is placed into the corresponding element of vD.

Other registers altered:

• Vector status and control register (VSCR):

Affected: SAT

Figure 6-8 shows the usage of the vaddshs instruction. Each of the eight elements in the
vectors, vA, vB, and vD, is 16 bits long.

Figure 6-8. vaddshs— Add Saturating Eight Signed Integer Elements (16-Bit)

04 vD vA vB 832

0 5 6 10 11 15 16 20 21 31

++++++++

vA

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-33

AltiVec Technology Programming Environments Manual
vaddsws vaddsws
Vector Add Signed Word Saturate

vaddsws vD,vA,vB Form VX

do i=0 to 127 by 32

aop0:32← SignExtend((vA)i:i+31,33)
bop0:32← SignExtend((vB)i:i+31,33)
temp0:32← aop0:32 +int bop0:32
vDi:i+31← SItoSIsat(temp0:32,32)

end

Each element of vaddsws is a word.

Each signed-integer element in vA is added to the corresponding signed-integer element
in vB.

If the sum is greater than (231-1) it saturates to (231-1) and if it is less than (-231) it saturates
to (-231). If saturation occurs, the SAT bit is set.

The signed-integer result is placed into the corresponding element of vD.

Other registers altered:

• Vector status and control register (VSCR):

Affected: SAT

Figure 6-9 shows the usage of the vaddsws instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-9. vaddsws—Add Saturating Four Signed Integer Elements (32-Bit)

04 vD vA vB 896

0 5 6 10 11 15 16 20 21 31

++++

vA

vB

vD
6-34 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vaddubm vaddubm
Vector Add Unsigned Byte Modulo

vaddubm vD,vA,vB Form VX

do i=0 to 127 by 8

vDi:i+7← (vA)i:i+7 +int (vB)i:i+7

end

Each element of vaddubm is a byte.

Each integer element in vA is modulo added to the corresponding integer element in vB.
The integer result is placed into the corresponding element of vD.

Note that the vaddubm instruction can be used for unsigned or signed integers.

Other registers altered:

• None

Figure 6-10 shows the vaddubm instruction usage. Each of the sixteen elements in the
vectors, vA, vB, and vD, is 8 bits long.

Figure 6-10. vaddubm—Add Sixteen Integer Elements (8-Bit)

04 vD vA vB 0

0 5 6 10 11 15 16 20 21 31

+ +++++++++++++++

vA

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-35

AltiVec Technology Programming Environments Manual
vaddubs vaddubs
Vector Add Unsigned Byte Saturate

vaddubs vD,vA,vB Form VX

do i=0 to 127 by 8

aop0:8← ZeroExtend((vA)i:i+7,9)
bop0:8← ZeroExtend((vB)i:i+7,9)
temp0:8← aop0:8 +int bop0:8
vDi:i+7← UItoUIsat(temp0:8,8)

end

Each element of vaddubs is a byte.

Each unsigned-integer element in vA is added to the corresponding unsigned-integer
element in vB.

If the sum is greater than (28-1) it saturates to (28-1) and the SAT bit is set.

The unsigned-integer result is placed into the corresponding element of vD.

Other registers altered:

• Vector status and control register (VSCR):

Affected: SAT

Figure 6-11 shows the usage of the vaddubs instruction. Each of the sixteen elements in
the vectors, vA, vB, and vD, is 8 bits long.

Figure 6-11. vaddubs—Add Saturating Sixteen Unsigned Integer Elements (8-Bit)

04 vD vA vB 512

0 5 6 10 11 15 16 20 21 31

+ +++++++++++++++

vA

vB

vD
6-36 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vadduhm vadduhm
Vector Add Unsigned Half Word Modulo

vadduhm vD,vA,vB Form VX

do i=0 to 127 by 16

vDi:i+15← (vA)i:i+15 +int (vB)i:i+15

end

Each element of vadduhm is a half word.

Each integer element in vA is added to the corresponding integer element in vB. The integer
result is placed into the corresponding element of vD.

Note that the vadduhm instruction can be used for unsigned or signed integers.

Other registers altered:

• None

Figure 6-12 shows the usage of the vadduhm instruction. Each of the eight elements in the
vectors, vA, vB, and vD, is 16 bits long.

Figure 6-12. vadduhm—Add Eight Integer Elements (16-Bit)

04 vD vA vB 64

0 5 6 10 11 15 16 20 21 31

++++++++

vA

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-37

AltiVec Technology Programming Environments Manual
vadduhs vadduhs
Vector Add Unsigned Half Word Saturate

vadduhs vD,vA,vB Form VX

do i=0 to 127 by 16

aop0:16← ZeroExtend((vA)i:i+15,17)
bop0:16← ZeroExtend((vB)i:i+15,17)
temp0:16← aop0:16 +int bop0:16
vDi:i+15← UItoUIsat(temp0:16,16)

end

Each element of vadduhs is a half word.

Each unsigned-integer element in vA is added to the corresponding unsigned-integer
element in vB.

If the sum is greater than (216-1) it saturates to (216-1) and the SAT bit is set.

The unsigned-integer result is placed into the corresponding element of vD.

Other registers altered:

• Vector status and control register (VSCR):

Affected: SAT

Figure 6-13 shows the usage of the vadduhs instruction. Each of the eight elements in the
vectors, vA, vB, and vD, is 16 bits long.

Figure 6-13. vadduhs—Add Saturating Eight Unsigned Integer Elements (16-Bit)

04 vD vA vB 576

0 5 6 10 11 15 16 20 21 31

++++++++

vA

vB

vD
6-38 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vadduwm vadduwm
Vector Add Unsigned Word Modulo

vadduwm vD,vA,vB Form: VX

do i=0 to 127 by 32

vDi:i+31← (vA)i:i+31 +int (vB)i:i+31

end

Each element of vadduwm is a word.

Each integer element in vA is modulo added to the corresponding integer element in vB.
The integer result is placed into the corresponding element of vD.

Note that the vadduwm instruction can be used for unsigned or signed integers.

Other registers altered:

• None

Form:

• VX

Figure 6-14 shows the usage of the vadduwm instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-14. vadduwm—Add Four Integer Elements (32-Bit)

04 vD vA vB 128

0 5 6 10 11 15 16 20 21 31

++++

vA

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-39

AltiVec Technology Programming Environments Manual
vadduws vadduws
Vector Add Unsigned Word Saturate

vadduws vD,vA,vB Form: VX

do i=0 to 127 by 3

aop0:32← ZeroExtend((vA)i:i+31,33)
bop0:32← ZeroExtend((vB)i:i+31,33)
temp0:32← aop0:32 +int bop0:32
vDi:i+31← UItoUIsat(temp0:32,32)

end

Each element of vadduws is a word.

Each unsigned-integer element in vA is added to the corresponding unsigned-integer
element in vB.

If the sum is greater than (232-1) it saturates to (232-1) and the SAT bit is set.

The unsigned-integer result is placed into the corresponding element of vD.

Other registers altered:

• Vector status and control register (VSCR):

Affected: SAT

Figure 6-15 shows the usage of the vadduws instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-15. vadduws—Add Saturating Four Unsigned Integer Elements (32-Bit)

04 vD vA vB 640

0 5 6 10 11 15 16 20 21 31

++++

vA

vB

vD
6-40 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vand vand
Vector Logical AND

vand vD,vA,vB Form: VX

vD ← (vA) & (vB)

The contents of vA are bitwise ANDed with the contents of vB and the result is placed into
vD.

Other registers altered:

• None

Figure 6-16 shows usage of the vand instruction.

Figure 6-16. vand—Logical Bitwise AND

04 vD vA vB 1028

0 5 6 10 11 15 16 20 21 31

&

vA

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-41

AltiVec Technology Programming Environments Manual
vandc vandc
Vector Logical AND with Complement

vandc vD,vA,vB Form: VX

vD ← (vA) & ¬(vB)

The contents of vA are ANDed with the one’s complement of the contents of vB and the
result is placed into vD.

Other registers altered:

• None

Figure 6-16 shows usage of the vandc instruction.

Figure 6-17. vand—Logical Bitwise AND with Complement

04 vD vA vB 1092

0 5 6 10 11 15 16 20 21 31

&

vB

Intermediate

vA

vD

¬

6-42 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vavgsb vavgsb
Vector Average Signed Byte

vavgsb vD,vA,vB Form: VX

do i=0 to 127 by 8

aop0:8← SignExtend((vA)i:i+7,9)
bop0:8← SignExtend((vB)i:i+7,9)
temp0:8← aop0:8 +int bop0:8 +int 1
vDi:i+7← temp0:7

end

Each element of vavgsb is a byte.

Each signed-integer byte element in vA is added to the corresponding signed-integer byte
element in vB, producing an 9-Bit signed-integer sum. The sum is incremented by 1. The
high-order 8 bits of the result are placed into the corresponding element of vD.

Other registers altered:

• None

Figure 6-18 shows the usage of the vavgsb instruction. Each of the sixteen elements in the
vectors, vA, vB, and vD, is 8 bits long.

Figure 6-18. vavgsb— Average Sixteen Signed Integer Elements (8-Bit)

04 vD vA vB 1282

0 5 6 10 11 15 16 20 21 31

+ +++++++++++++++

vA

vB

vD

+1 +1+1+1+1+1+1+1+1+1+1+1+1+1+1+1

Temp

Temp

8 bits

9 bits
MOTOROLA Chapter 6. AltiVec Instructions 6-43

AltiVec Technology Programming Environments Manual
vavgsh vavgsh
Vector Average Signed Half Word

vavgsh vD,vA,vB Form: VX

do i=0 to 127 by 16

aop0:16← SignExtend((vA)i:i+15,17)
bop0:16← SignExtend((vB)i:i+15,17)
temp0:16← aop0:15 +int bop0:15 +int 1
vDi:i+15← temp0:15

end

Each element of vavgsh is a half word.

Each signed-integer element in vA is added to the corresponding signed-integer element in
vB, producing an 17-bit signed-integer sum. The sum is incremented by 1. The high-order
16 bits of the result are placed into the corresponding element of vD.

Other registers altered:

• None

Figure 6-19 shows the usage of the vavgsh instruction. Each of the eight elements in the
vectors, vA, vB, and vD, is 16 bits long.

Figure 6-19. vavgsh—Average Eight Signed Integer Elements (16-bits)

04 vD vA vB 1346

0 5 6 10 11 15 16 20 21 31

+++++++

vA

vB

+1+1+1+1+1+1+1

Temp

16 bits

17 bits

+

+1

Temp
6-44 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vavgsw vavgsw
Vector Average Signed Word

vavgsw vD,vA,vB Form: VX

do i=0 to 127 by 32

aop0:32← SignExtend((vA)i:i+31,33)
bop0:32← SignExtend((vB)i:i+31,33)
temp0:32← aop0:32 +int bop0:32 +int 1
vDi:i+31← temp0:31

end

Each element of vavgsw is a word.

Each signed-integer element in vA is added to the corresponding signed-integer element in
vB, producing an 33-bit signed-integer sum. The sum is incremented by 1. The high-order
32 bits of the result are placed into the corresponding element of vD.

Other registers altered:

• None

Figure 6-20 shows the usage of the vavgsw instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-20. vavgsw— Average Four Signed Integer Elements (32-Bit)

04 vD vA vB 1410

0 5 6 10 11 15 16 20 21 31

+++

vA

vB

+1+1+1

Temp

32 bits

33 bits

+

+1

Temp
MOTOROLA Chapter 6. AltiVec Instructions 6-45

AltiVec Technology Programming Environments Manual
vavgub vavgub
Vector Average Unsigned Byte

vavgub vD,vA,vB Form: VX

do i=0 to 127 by 8

aop0:8← ZeroExtend((vA)i:i+7,9)
bop0:n← ZeroExtend((vB)i:i+71,9)
temp0:n← aop0:8 +int bop0:8 +int 1
vDi:i+7← temp0:7

end

Each element of vavgub is a byte.

Each unsigned-integer element in vA is added to the corresponding unsigned-integer
element in vB, producing an 9-bit unsigned-integer sum. The sum is incremented by 1. The
high-order 8 bits of the result are placed into the corresponding element of vD.

Other registers altered:

• None

Figure 6-21 shows the usage of the vavgub instruction. Each of the sixteen elements in the
vectors, vA, vB, and vD, is 8 bits long.

.

Figure 6-21. vavgub—Average Sixteen Unsigned Integer Elements (8-bits)

04 vD vA vB 1026

0 5 6 10 11 15 16 20 21 31

+ +++++++++++++++

vA

vB

vD

+1 +1+1+1+1+1+1+1+1+1+1+1+1+1+1+1

Temp

Temp

8 bits

9 bits
6-46 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vavguh vavguh
Vector Average Unsigned Half Word

vavguh vD,vA,vB Form: VX

do i=0 to 127 by 16

aop0:16← ZeroExtend((vA)i:i+15,17)
bop0:16← ZeroExtend((vB)i:i+15,17)
temp0:16← aop0:16 +int bop0:16 +int 1
vDi:i+15← temp0:15

end

Each element of vavguh is a half word.

Each unsigned-integer element in vA is added to the corresponding unsigned-integer
element in vB, producing a 17-bit unsigned-integer. The sum is incremented by 1. The
high-order 16 bits of the result are placed into the corresponding element of vD.

Other registers altered:

• None

Figure 6-22 shows the usage of the vavgsh instruction. Each of the eight elements in the
vectors, vA, vB, and vD, is 16 bits long.

Figure 6-22. vavgsh— Average Eight Signed Integer Elements (16-Bit)

04 vD vA vB 1090

0 5 6 10 11 15 16 20 21 31

+++++++

vA

vB

+1+1+1+1+1+1+1

Temp

16 bits

17 bits

+

+1

Temp
MOTOROLA Chapter 6. AltiVec Instructions 6-47

AltiVec Technology Programming Environments Manual
vavguw vavguw
Vector Average Unsigned Word

vavguw vD,vA,vB Form: VX

do i=0 to 127 by 32

aop0:32← ZeroExtend((vA)i:i+31,33)
bop0:32← ZeroExtend((vB)i:i+31,33)
temp0:32← aop0:32 +int bop0:32 +int 1
vDi:i+31← temp0:31

end

Each element of vavguw is a word.

Each unsigned-integer element in vA is added to the corresponding unsigned-integer
element in vB, producing an 33-bit unsigned-integer sum. The sum is incremented by 1.
The high-order 32 bits of the result are placed into the corresponding element of vD.

Other registers altered:

• None

Figure 6-23 shows the usage of the vavguw instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-23. vavguw—Average Four Unsigned Integer Elements (32-Bit)

04 vD vA vB 1154

0 5 6 10 11 15 16 20 21 31

+++

vA

vB

+1+1+1

Temp

32 bits

33 bits

+

+1

Temp
6-48 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vcfsx vcfsx
Vector Convert from Signed Fixed-Point Word

vcfsx vD,vB,UIMM Form: VX

do i=0 to 127 by 32

vDi:i+31 ← CnvtSI32ToFP32((vB)i:i+31) ÷fp 2UIMM

end

Each signed fixed-point integer word element in vB is converted to the nearest
single-precision floating-point value. The result is divided by 2UIMM (UIMM = Unsigned
immediate value) and placed into the corresponding word element of vD.

Other registers altered:

• None

Figure 6-24 shows the usage of the vcfsx instruction. Each of the four elements in the
vectors vB and vD is 32 bits long.

Figure 6-24. vcfsx—Convert Four Signed Integer Elements to Four Floating-Point
Elements (32-Bit)

04 vD UIMM vB 842

0 5 6 10 11 15 16 20 21 31

vB

vD

÷÷÷÷

Scale Factor from Opcode (2UIMM)
MOTOROLA Chapter 6. AltiVec Instructions 6-49

AltiVec Technology Programming Environments Manual
vcfux vcfux
Vector Convert from Unsigned Fixed-Point Word

vcfux vD,vB,UIMM Form: VX

do i=0 to 127 by 32

vDi:i+31 ← CnvtUI32ToFP32((vB)i:i+31) ÷fp 2UIMM

end

Each unsigned fixed-point integer word element in vB is converted to the nearest
single-precision floating-point value. The result is divided by 2UIMM and placed into the
corresponding word element of vD.

Other registers altered:

• None

Figure 6-25 shows the usage of the vcfux instruction. Each of the four elements in the
vectors vB and vD is 32 bits long.

Figure 6-25. vcfux—Convert Four Unsigned Integer Elements to Four
Floating-Point Elements (32-Bit)

04 vD UIMM vB 778

0 5 6 10 11 15 16 20 21 31

vB

vD

÷÷÷÷

Scale Factor from Opcode (2UIMM)
6-50 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vcmpbfpx vcmpbfpx
Vector Compare Bounds Floating Point

vcmpbfp vD,vA,vB (Rc = 0) Form: VXR
vcmpbfp. vD,vA,vB (Rc = 1)

do i=0 to 127 by 32

le ← ((vA)i:i+31 ≤fp (vB)i:i+31)
ge ← ((vA)i:i+31 ≥fp -(vB)i:i+31)
vDi:i+31 ← −le || −ge || 300

end
if Rc=1 then do

ib ← (vD = 1280)
CR24:27 ← 0b00 || ib || 0b0

end

Each single-precision word element in vA is compared to the corresponding element in vB.
A 2-bit value is formed that indicates whether the element in vA is within the bounds
specified by the element in vB, as follows.

Bit 0 of the 2-bit value is zero if the element in vA is less than or equal to the element in
vB, and is one otherwise. Bit 1 of the 2-bit value is zero if the element in vA is greater than
or equal to the negative of the element in vB, and is one otherwise.

The 2-bit value is placed into the high-order two bits of the corresponding word element
(bits 0–1 for word element 0, bits 32–33 for word element 1, bits 64–65 for word element
2, bits 96–97 for word element 3) of vD and the remaining bits of the element are cleared.

If Rc=1, CR Field 6 is set to indicate whether all four elements in vA are within the bounds
specified by the corresponding element in vB, as follows.

• CR6 = 0b00 || all_within_bounds || 0

Note that if any single-precision floating-point word element in vB is negative; the
corresponding element in vA is out of bounds. Note that if a vA or a vB element is a NaN,
the two high order bits of the corresponding result will both have the value 1.

If VSCR[NJ] = 1, every denormalized operand element is truncated to 0 before the
comparison is made.

Other registers altered:

• Condition register (CR6):

Affected: Bit 2 (if Rc = 1)

04 vD vA vB Rc 966

0 5 6 10 11 15 16 20 21 22 31
MOTOROLA Chapter 6. AltiVec Instructions 6-51

AltiVec Technology Programming Environments Manual
Figure 6-26 shows the usage of the vcmpbfp instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-26. vcmpbfp—Compare Bounds of Four Floating-Point Elements (32-Bit)

≤

vA

vB

vD
0 32 64 961 33

≥ ≤ ≥

65 97

≤ ≥ ≤ ≥
6-52 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vcmpeqfpx vcmpeqfpx
Vector Compare Equal-to-Floating Point

vcmpeqfp vD,vA,vB Form: VXR
vcmpeqfp. vD,vA,vB

do i=0 to 127 by 32

if (vA)i:i+31 =fp (vB)i:i+31

then vDi:i+31 ← 0xFFFF_FFFF
else vDi:i+31 ← 0x0000_0000

end

if Rc=1 then do

t ← (vD = 1281)
f ← (vD = 1280)
CR24:27 ← t || 0b0 || f || 0b0

end

Each single-precision floating-point word element in vA is compared to the corresponding
single-precision floating-point word element in vB. The corresponding word element in vD
is set to all 1s if the element in vA is equal to the element in vB, and is cleared to all 0s
otherwise.

If Rc = 1. CR6 filed is set according to all, some, or none of the elements pairs compare
equal.

• CR6 = all_equal || 0b0 || none_equal || 0b0

Note that if a vA or vB element is a NaN, the corresponding result will be 0x0000_0000.

Other registers altered:

• Condition register (CR6):

Affected: Bits 0-3 (if Rc = 1)

Figure 6-27 shows the usage of the vcmpeqfp instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-27. vcmpeqfp—Compare Equal of Four Floating-Point Elements (32-Bit)

04 vD vA vB Rc 198

0 5 6 10 11 15 16 20 21 22 31

= = = =

vA

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-53

AltiVec Technology Programming Environments Manual
vcmpequbx vcmpequbx
Vector Compare Equal-to Unsigned Byte

vcmpequb vD,vA,vB Form: VXR
vcmpequb. vD,vA,vB

do i=0 to 127 by 8

if (vA)i:i+7 =int (vB)i:i+7
then vDi:i+7 ← 81
else vDi:i+7 ← 80

end

if Rc=1 then do

t ← (vD = 1281)
f ← (vD = 1280)

CR[24:27] ← t || 0b0 || f || 0b0

end

Each element of vcmpequb is a byte.

Each integer element in vA is compared to the corresponding integer element in vB. The
corresponding element in vD is set to all 1s if the element in vA is equal to the element in
vB, and is cleared to all 0s otherwise.

The CR6 is set according to whether all, some, or none of the elements compare equal.

• CR6 = all_equal || 0b0 || none_equal || 0b0

Note that vcmpequb[.] can be used for unsigned or signed integers.

Other registers altered:

• Condition register (CR6):

Affected: Bits 0–3 (if Rc = 1)

Figure 6-28 shows the usage of the vcmpequb instruction. Each of the sixteen elements in
the vectors, vA, vB, and vD, is 8 bits long.

Figure 6-28. vcmpequb—Compare Equal of Sixteen Integer Elements (8-bits)

04 vD vA vB Rc 6

0 5 6 10 11 15 16 20 21 22 31

 = = = = = = = = = = = = = == =

vA

vB

vD
6-54 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vcmpequhx vcmpequhx
Vector Compare Equal-to Unsigned Half Word

vcmpequh vD,vA,vB Form: VXR
vcmpequh. vD,vA,vB

do i=0 to 127 by 16

if (vA)i:i+15 =int (vB)i:i+15
then vDi:i+15 ← 161
else vDi:i+15 ← 160

end

if Rc=1 then do

t ← (vD = 1281)
f ← (vD = 1280)

CR[24:27] ← t || 0b0 || f || 0b0

end

Each element of vcmpequh is a half word.

Each integer element in vA is compared to the corresponding integer element in vB. The
corresponding element in vD is set to all 1s if the element in vA is equal to the element in
vB, and is cleared to all 0s otherwise.

The CR6 is set according to whether all, some, or none of the elements compare equal.

• CR6 = all_equal || 0b0 || none_equal || 0b0.

Note that vcmpequh[.] can be used for unsigned or signed integers.

Other registers altered:

• Condition register (CR6):

Affected: Bits 0–3 (if Rc = 1)

Figure 6-29 shows the usage of the vcmpequh instruction. Each of the eight elements in
the vectors, vA, vB, and vD, is 16 bits long.

Figure 6-29. vcmpequh—Compare Equal of Eight Integer Elements (16-Bit)

04 vD vA vB Rc 70

0 5 6 10 11 15 16 20 21 22 31

 = = ======

vA

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-55

AltiVec Technology Programming Environments Manual
vcmpequwx vcmpequwx
Vector Compare Equal-to Unsigned Word

vcmpequw vD,vA,vB Form: VXR
vcmpequw. vD,vA,vB

do i=0 to 127 by 32

if (vA)i:i+311 =int (vB)i:i+31
 then vDi:i+31 ← n1
 else vDi:i+31 ← n0

end

if Rc=1 then do

t ← (vD = 1281)
f ← (vD = 1280)

CR[24:27] ← t || 0b0 || f || 0b0

end

Each element of vcmpequw is a word.

Each integer element in vA is compared to the corresponding integer element in vB. The
corresponding element in vD is set to all 1s if the element in vA is equal to the element in
vB, and is cleared to all 0s otherwise.

The CR6 is set according to whether all, some, or none of the elements compare equal.

• CR6 = all_equal || 0b0 || none_equal || 0b0

Note that vcmpequw[.] can be used for unsigned or signed integers.

Other registers altered:

• Condition register (CR6):

Affected: Bits 0-3 (if Rc = 1)

Figure 6-30 shows the usage of the vcmpequw instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-30. vcmpequw—Compare Equal of Four Integer Elements (32-Bit)

04 vD vA vB Rc 134

0 5 6 10 11 15 16 20 21 22 31

 = = = =

vA

vB

vD
6-56 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vcmpgefpx vcmpgefpx
Vector Compare Greater-Than-or-Equal-to Floating Point

vcmpgefp vD,vA,vB (Rc = 0) Form: VXR
vcmpgefp. vD,vA,vB (Rc = 1)

do i=0 to 127 by 32
if (vA)i:i+31 ≥fp (vB)i:i+31
then vDi:i+31 ← 0xFFFF_FFFF
else vDi:i+31 ← 0x0000_0000

end

if Rc=1 then do

t ← (vD = 1281)
f ← (vD = 1280)

CR24:27 ← t || 0b0 || f || 0b0

end

Each single-precision floating-point word element in vA is compared to the corresponding
single-precision floating-point word element in vB. The corresponding word element in vD
is set to all 1s if the element in vA is greater than or equal to the element in vB, and is
cleared to all 0s otherwise.
If Rc = 1, CR6 is set according to all_greater_or_equal || some_greater_or_equal ||
none_great_or_equal.

CR6 = all_greater_or_equal || 0b0 || none greater_or_equal || 0b0.

Note that if a vA or vB element is a NaN, the corresponding results will be 0x0000_0000.
Other registers altered:

• Condition register (CR6):

Affected: Bits 0-3 (if Rc = 1)

Figure 6-31 shows the usage of the vcmpgefp instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long

Figure 6-31. vcmpgefp—Compare Greater-Than-or-Equal of Four Floating-Point
Elements (32-Bit)

04 vD vA vB Rc 454

0 5 6 10 11 15 16 20 21 22 31

≥≥≥≥

vA

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-57

AltiVec Technology Programming Environments Manual
vcmpgtfpx vcmpgtfpx
Vector Compare Greater-Than Floating-Point

vcmpgtfp vD,vA,vB Form: VXR
vcmpgtfp. vD,vA,vB

do i=0 to 127 by 32
if (vA)i:i+31 >fp (vB)i:i+31
 then vDi:i+31 ← 0xFFFF_FFFF
 else vDi:i+31 ← 0x0000_0000

end
if Rc=1 then do

t ← (vD = 1281)
f ← (vD = 1280)
CR[24:27] ← t || 0b0 || f || 0b0

end

Each single-precision floating-point word element in vA is compared to the corresponding
single-precision floating-point word element in vB. The corresponding word element in vD
is set to all 1s if the element in vA is greater than the element in vB, and is cleared to all 0s
otherwise.

If Rc = 1, CR6 is set according to all_greater_than || some_greater_than ||
none_greater_than.

CR6 = all_greater_than || 0b0 || none greater_than || 0b0.

Note that if a vA or vB element is a NaN, the corresponding results will be 0x0000_0000.

Other registers altered:

• Condition register (CR6):

Affected: Bits 0-3 (if Rc = 1)

Figure 6-32 shows the usage of the vcmpgtfp instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-32. vcmpgtfp—Compare Greater-Than of Four Floating-Point Elements
(32-Bit)

04 vD vA vB Rc 710

0 5 6 10 11 15 16 20 21 22 31

>>>>

vA

vB

vD
6-58 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vcmpgtsbx vcmpgtsbx
Vector Compare Greater-Than Signed Byte

vcmpgtsb vD,vA,vB Form: VXR
vcmpgtsb. vD,vA,vB

do i=0 to 127 by 8

if (vA)i:i+7 >si (vB)i:i+7
 then vDi:i+7 ← 81
 else vDi:i+7 ← 80

end
if Rc=1 then do

t ← (vD = 1281)
f ← (vD = 1280)
CR24:27 ← t || 0b0 || f || 0b0

end

Each element of vcmpgtsb is a byte.

Each signed-integer element in vA is compared to the corresponding signed-integer
element in vB. The corresponding element in vD is set to all 1s if the element in vA is
greater than the element in vB, and is cleared to all 0s otherwise.

If Rc = 1, CR6 is set according to all_greater_than || some_greater_than || none_great_than.

CR6 = all_greater_than || 0b0 || none greater_than || 0b0.

Note that if a vA or vB element is a NaN, the corresponding results will be 0x0000_0000.

Other registers altered:

• Condition register (CR6):

Affected: Bits 0-3 (if Rc = 1)

Figure 6-33 shows the usage of the vcmpgtsb instruction. Each of the sixteen elements in
the vectors, vA, vB, and vD, is 8 bits long.

Figure 6-33. vcmpgtsb—Compare Greater-Than of Sixteen Signed Integer Elements (8-Bit)

04 vD vA vB Rc 774

0 5 6 10 11 15 16 20 21 22 31

> >>>>>>>>>>>>>>>

vA

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-59

AltiVec Technology Programming Environments Manual
vcmpgtshx vcmpgtshx
Vector Compare Greater-Than Condition Register Signed Half Word

vcmpgtsh vD,vA,vB Form: VXR
vcmpgtsh. vD,vA,vB

do i=0 to 127 by 16

if (vA)i:i+15 >si (vB)i:i+15
 then vDi:i+15 ← 161
 else vDi:i+15 ← 160

end

if Rc=1 then do

t ← (vD = 1281)
f ← (vD = 1280)
CR24:27 ← t || 0b0 || f || 0b0

end

Each element of vcmpgtsh is a half word.

Each signed-integer element in vA is compared to the corresponding signed-integer
element in vB. The corresponding element in vD is set to all 1s if the element in vA is
greater than the element in vB, and is cleared to all 0s otherwise.

If Rc = 1, CR6 is set according to all_greater_than || some_greater_than || none_great_than.

CR6 = all_greater_than || 0b0 || none greater_than || 0b0.

Note that if a vA or vB element is a NaN, the corresponding results will be 0x0000_0000.

Other registers altered:

• Condition register (CR6):

Affected: Bits 0-3 (if Rc = 1)

Figure 6-34 shows the usage of the vcmpgtsh instruction. Each of the eight elements in the
vectors, vA, vB, and vD, is 16 bits long.

Figure 6-34. vcmpgtsh—Compare Greater-Than of Eight Signed Integer Elements (16-Bit)

04 vD vA vB Rc 838

0 5 6 10 11 15 16 20 21 22 31

>>>>>>>>

vA

vB

vD
6-60 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vcmpgtswx vcmpgtswx
Vector Compare Greater-Than Signed Word

vcmpgtsw vD,vA,vB Form: VXR
vcmpgtsw. vD,vA,vB

do i=0 to 127 by 32

if (vA)i:i+31 >si (vB)i:i+31
 then vDi:i+31 ← 321
 else vDi:i+31 ← 320

end

if Rc=1 then do

t ← (vD = 1281)
f ← (vD = 1280)
CR24:27 ← t || 0b0 || f || 0b0

end

Each element of vcmpgtsw is a word.

Each signed-integer element in vA is compared to the corresponding signed-integer
element in vB. The corresponding element in vD is set to all 1s if the element in vA is
greater than the element in vB, and is cleared to all 0s otherwise.

If Rc = 1, CR6 is set according to all_greater_than || some_greater_than || none_great_than.

CR6 = all_greater_than || 0b0 || none greater_than || 0b0.

Note that if a vA or vB element is a NaN, the corresponding results will be 0x0000_0000.

Other registers altered:

• Condition register (CR6):

Affected: Bits 0-3 (if Rc = 1)

Figure 6-35 shows the usage of the vcmpgtsw instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-35. vcmpgtsw—Compare Greater-Than of Four Signed Integer Elements (32-Bit)

04 vD vA vB Rc 902

0 5 6 10 11 15 16 20 21 22 31

>>>>

vA

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-61

AltiVec Technology Programming Environments Manual
vcmpgtubx vcmpgtubx
Vector Compare Greater-Than Unsigned Byte

vcmpgtub vD,vA,vB Form: VXR
vcmpgtub. vD,vA,vB

do i=0 to 127 by 8

if (vA)i:i+7 >ui (vB)i:i+7
 then vDi:i+7 ← 81
 else vDi:i+7 ← 80

end

if Rc=1 then do

t ← (vD = 1281)
f ← (vD = 1280)
CR[24–27] ← t || 0b0 || f || 0b0

end

Each element of vcmpgtub is a byte. Each unsigned-integer element in vA is compared to
the corresponding unsigned-integer element in vB. The corresponding element in vD is set
to all 1s if the element in vA is greater than the element in vB, and is cleared to all 0s
otherwise.

If Rc = 1, CR6 is set according to all_greater_than || some_greater_than || none_great_than.

CR6 = all_greater_than || 0b0 || none greater_than || 0b0.

Note that if a vA or vB element is a NaN, the corresponding results will be 0x0000_0000.

Other registers altered:

• Condition register (CR6):

Affected: Bits 0-3 (if Rc = 1)

Figure 6-36 shows the usage of the vcmpgtub instruction. Each of the sixteen elements in
the vectors, vA, vB, and vD, is 8 bits long.

Figure 6-36. vcmpgtub—Compare Greater-Than of Sixteen Unsigned Integer Elements
(8-Bit)

04 vD vA vB Rc 518

0 5 6 10 11 15 16 20 21 22 31

> >>>>>>>>>>>>>>>

vA

vB

vD
6-62 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vcmpgtuhx vcmpgtuhx
Vector Compare Greater-Than Unsigned Half Word

vcmpgtuh vD,vA,vB Form: VXR
vcmpgtuh. vD,vA,vB

do i=0 to 127 by 16

if (vA)i:i+151 >ui (vB)i:i+15
 then vDi:i+15 ← 161
 else vDi:i+15 ← 160

end

if Rc=1 then do

t ← (vD = 1281)
f ← (vD = 1280)
CR[24–27] ← t || 0b0 || f || 0b0

end

Each element of vcmpgtuh is a half word. Each unsigned-integer element in vA is
compared to the corresponding unsigned-integer element in vB. The corresponding
element in vD is set to all 1s if the element in vA is greater than the element in vB, and is
cleared to all 0s otherwise.

If Rc = 1, CR6 is set according to all_greater_than || some_greater_than || none_great_than.

CR6 = all_greater_than || 0b0 || none greater_than || 0b0.

Note that if a vA or vB element is a NaN, the corresponding results will be 0x0000_0000.

Other registers altered:

• Condition register (CR6):

Affected: Bits 0-3 (if Rc = 1)

Figure 6-37 shows the usage of the vcmpgtuh instruction. Each of the eight elements in the
vectors, vA, vB, and vD, is 16 bits long.

Figure 6-37. vcmpgtuh—Compare Greater-Than of Eight Unsigned Integer Elements
(16-Bit)

04 vD vA vB Rc 582

0 5 6 10 11 15 16 20 21 22 31

>>>>>>>>

vA

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-63

AltiVec Technology Programming Environments Manual
vcmpgtuwx vcmpgtuwx
Vector Compare Greater-Than Unsigned Word

vcmpgtuw vD,vA,vB Form: VXR
vcmpgtuw. vD,vA,vB

do i=0 to 127 by 32

if (vA)i:i+31 >ui (vB)i:i+31
 then vDi:i+31 ← 321
 else vDi:i+31 ← 320

end

if Rc=1 then do

t ← (vD = 1281)
f ← (vD = 1280)
CR[24–27] ← t || 0b0 || f || 0b0

end

Each element of vcmpgtuw is a word. Each unsigned-integer element in vA is compared
to the corresponding unsigned-integer element in vB. The corresponding element in vD is
set to all 1s if the element in vA is greater than the element in vB, and is cleared to all 0s
otherwise.

If Rc = 1, CR6 is set according to all_greater_than || some_greater_than || none_great_than.

CR6 = all_greater_than || 0b0 || none_greater_than || 0b0.

Note that if a vA or vB element is a NaN, the corresponding results will be 0x0000_0000.

Other registers altered:

• Condition register (CR6):

Affected: Bits 0-3 (if Rc = 1)

Figure 6-38 shows the usage of the vcmpgtuw instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-38. vcmpgtuw—Compare Greater-Than of Four Unsigned Integer
Elements (32-Bit)

04 vD vA vB Rc 646

0 5 6 10 11 15 16 20 21 22 31

>>>>

vA

vB

vD
6-64 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vctsxs vctsxs
Vector Convert to Signed Fixed-Point Word Saturate

vctsxs vD,vB,UIMM Form: VX

do i=0 to 127 by 32

if (vB)i+1:i+8=255 | (vB)i+1:i+8 + UIMM ≤ 254 then
 vDi:i+31 ← CnvtFP32ToSI32Sat((vB)i:i+31 *fp 2

UIMM)
 else
 do

if (vB)i=0 then vDi:i+31 ← 0x7FFF_FFFF
 else vDi:i+31 ← 0x8000_0000
 VSCRSAT ← 1

end

end

Each single-precision word element in vB is multiplied by 2UIMM. The product is converted
to a signed integer using the rounding mode, Round toward Zero. If the intermediate result
is greater than (231-1) it saturates to (231-1); if it is less than -231 it saturates to -231. A
signed-integer result is placed into the corresponding word element of vD.

Fixed-point integers used by the vector convert instructions can be interpreted as consisting
of 32-UIMM integer bits followed by UIMM fraction bits. The vector convert to
fixed-point word instructions support only the rounding mode, Round toward Zero. A
single-precision number can be converted to a fixed-point integer using any of the other
three rounding modes by executing the appropriate vector round to floating-point integer
instruction before the vector convert to fixed-point word instruction.

Other registers altered:

• Vector status and control register (VSCR):

Affected: SAT

Figure 6-39 shows the usage of the vctsxs instruction. Each of the four elements in the
vectors vB and vD is 32 bits long.

Figure 6-39. vctsxs—Convert Four Floating-Point Elements to Four Signed Integer
Elements (32-Bit)

04 vD UIMM vB 970

0 5 6 10 11 15 16 20 21 31

vB

vD

xxxx

Scale Factor from Opcode (2UIMM)
MOTOROLA Chapter 6. AltiVec Instructions 6-65

AltiVec Technology Programming Environments Manual
vctuxs vctuxs
Vector Convert to Unsigned Fixed-Point Word Saturate

vctuxs vD,vB,UIMM Form: VX

do i=0 to 127 by 32

if (vB)i+1:i+8=255 | (vB)i+1:i+8 + UIMM ≤ 254 then
 vDi:i+31 ← CnvtFP32ToUI32Sat((vB)i:i+31 *fp 2

UIM)
 else
 do
 if (vB)i=0 thenvDi:i+31 ← 0xFFFF_FFFF
 elsevDi:i+31 ← 0x0000_0000
 VSCRSAT ← 1

end

end

Each single-precision floating-point word element in vB is multiplied by 2UIM. The product
is converted to an unsigned fixed-point integer using the rounding mode Round toward
Zero.

If the intermediate result is greater than (232-1) it saturates to (232-1) and if it is less than 0
it saturates to 0.

The unsigned-integer result is placed into the corresponding word element of vD.

Other registers altered:

• Vector status and control register (VSCR):

Affected: SAT

Figure 6-40 shows the usage of the vctuxs instruction. Each of the four elements in the
vectors vB and vD is 32 bits long.

Figure 6-40. vctuxs—Convert Four Floating-Point Elements to Four Unsigned
Integer Elements (32-Bit)

04 vD UIMM vB 906

0 5 6 10 11 15 16 20 21 31

vB

vD

xxxx

Scale Factor from Opcode (2UIMM)
6-66 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vexptefp vexptefp
Vector 2 Raised to the Exponent Estimate Floating Point

vexptefp vD,vB Form: VX

do i=0 to 127 by 32

x ← (vB)i:i+31

vDi:i+31 ← 2x

end

The single-precision floating-point estimate of 2 raised to the power of each
single-precision floating-point element in vB is placed into the corresponding element of
vD.

The estimate has a relative error in precision no greater than one part in 16, that is,

where x is the value of the element in vB. The most significant 12 bits of the estimate's
significant are monotonic. Note that the value placed into the element of vD may vary
between implementations, and between different executions on the same implementation.

If an operation has an integral value and the resulting value is not 0 or +∞, the result is exact.

Operation with various special values of the element in vB is summarized in Table 6-5
below.

If VSCR[NJ] = 1, every denormalized operand element is truncated to a 0 of the same sign
before the operation is carried out, and each denormalized result element truncates to a 0 of
the same sign.

04 vD 0_0000 vB 394

0 5 6 10 11 15 16 20 21 31

Table 6-5. Special Values of the Element in vB

Value of
Element in vB

Result

-∞ +0

-0 +1

+0 +1

+∞ +∞

NaN QNaN

estimate 2
x

–

2
x

1
16
------≤
MOTOROLA Chapter 6. AltiVec Instructions 6-67

AltiVec Technology Programming Environments Manual
Other registers altered:

• None

Figure 6-41 shows the usage of the vexptefp instruction. Each of the four elements in the
vectors vB and vD is 32 bits long.

Figure 6-41. vexptefp—2 Raised to the Exponent Estimate Floating-Point for Four
Floating-Point Elements (32-Bit)

2x2x2x 2x

vB

vD

x x x x
6-68 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vlogefp vlogefp
Vector Log2 Estimate Floating Point

vlogefp vD,vB Form: VX

do i=0 to 127 by 32

x ← (vB)i:i+31

vDi:i+31 ← log2(x)

end

The single-precision floating-point estimate of the base 2 logarithm of each
single-precision floating-point element in vB is placed into the corresponding element of
vD.

The estimate has an absolute error in precision (absolute value of the difference between
the estimate and the infinitely precise value) no greater than 2-5. The estimate has a relative
error in precision no greater than one part in 8, as described below:

where x is the value of the element in vB, except when |x-1| ≤ 1 ÷ 8. The most significant
12 bits of the estimate's significant are monotonic. Note that the value placed into the
element of vD may vary between implementations, and between different executions on the
same implementation.

Operation with various special values of the element in vB is summarized below in
Table 6-6.

If VSCR[NJ] = 1, every denormalized operand element is truncated to a 0 of the same sign
before the operation is carried out, and each denormalized result element truncates to a 0 of
the same sign.

04 vD 0_0000 vB 458

0 5 6 10 11 15 16 20 21 31

Table 6-6. Special Values of the Element in vB

Value Result

-∞ QNaN

less than 0 QNaN

±0 -∞

+∞ +∞

NaN QNaN

estimate - log2 x() 1
32
------≤

 unless x 1–
1
8
---≤
MOTOROLA Chapter 6. AltiVec Instructions 6-69

AltiVec Technology Programming Environments Manual
Other registers altered:

• None

Figure 6-42 shows the usage of the vexptefp instruction. Each of the four elements in the
vectors vB and vD is 32 bits long.

Figure 6-42. vexptefp—Log2 Estimate Floating-Point for Four Floating-Point
Elements (32-Bit)

log2(x)log2(x)log2(x)log2(x)

vB

vD

x x x x
6-70 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vmaddfp vmaddfp
Vector Multiply Add Floating Point

vmaddfp vD,vA,vC,vB Form: VA

do i=0 to 127 by 32

vDi:i+31 ← RndToNearFP32(((vA)i:i+31 *fp (vC)i:i+31) +fp (vB)i:i+31)

end

Each single-precision floating-point word element in vA is multiplied by the corresponding
single-precision floating-point word element in vC. The corresponding single-precision
floating-point word element in vB is added to the product. The result is rounded to the
nearest single-precision floating-point number and placed into the corresponding word
element of vD.

Note that a vector multiply floating-point instruction is not provided. The effect of such an
instruction can be obtained by using vmaddfp with vB containing the value -0.0
(0x8000_0000) in each of its four single-precision floating-point word elements. (The value
must be -0.0, not +0.0, in order to obtain the IEEE-conforming result of -0.0 when the result
of the multiplication is -0.)

Other registers altered:

• None

If VSCR[NJ] = 1, every denormalized operand element is truncated to a 0 of the same sign
before the operation is carried out, and each denormalized result element truncates to a 0 of
the same sign. Figure 6-43 shows the usage of the vmaddfp instruction. Each of the four
elements in the vectors, vA, vB, and vD, is 32 bits long.

Figure 6-43. vmaddfp—Multiply-Add Four Floating-Point Elements (32-Bit)

04 vD vA vB vC 46

0 5 6 10 11 15 16 20 21 26 31

+

Prod

vB

vD

* * * *

+ + +

vC

vA
MOTOROLA Chapter 6. AltiVec Instructions 6-71

AltiVec Technology Programming Environments Manual
vmaxfp vmaxfp
Vector Maximum Floating Point

vmaxfp vD,vA,vB Form: VX

do i=0 to 127 by 32

if (vA)i:i+31 ≥fp (vB)i:i+31
 then vDi:i+31 ← (vA)i:i+31
 else vDi:i+31 ← (vB)i:i+31

end

Each single-precision floating-point word element in vA is compared to the corresponding
single-precision floating-point word element in vB. The larger of the two single-precision
floating-point values is placed into the corresponding word element of vD.

The maximum of +0 and -0 is +0. The maximum of any value and a NaN is a QNaN.

Other registers altered:

• None

Figure 6-44 shows the usage of the vmaxfp instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-44. vmaxfp—Maximum of Four Floating-Point Elements (32-Bit)

04 vD vA vB 1034

0 5 6 10 11 15 16 20 21 31

≥fp≥fp≥fp≥fp

vA

vB

vD
6-72 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vmaxsb vmaxsb
Vector Maximum Signed Byte

vmaxsb vD,vA,vB Form: VX

do i=0 to 127 by 8

if (vA)i:i+7 ≥si (vB)i:i+7
 then vDi:i+7 ← (vA)i:i+7
 else vDi:i+7 ← (vB)i:i+7

end

Each element of vmaxsb is a byte.

Each signed-integer element in vA is compared to the corresponding signed-integer
element in vB. The larger of the two signed-integer values is placed into the corresponding
element of vD.

Other registers altered:

• None

Figure 6-45 shows the usage of the vmaxsb instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-45. vmaxsb—Maximum of Sixteen Signed Integer Elements (8-Bit)

04 vD vA vB 258

0 5 6 10 11 15 16 20 21 31

≥si ≥si≥si≥si≥si≥si≥si≥si≥si≥si≥si≥si≥si≥si≥si≥si

vA

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-73

AltiVec Technology Programming Environments Manual
vmaxsh vmaxsh
Vector Maximum Signed Half Word

vmaxsh vD,vA,vB Form: VX

do i=0 to 127 by 16

if (vA)i:i+7 ≥si (vB)i:i+15
 then vDi:i+15← (vA)i:i+15
 else vDi:i+15 ← (vB)i:i+15

end

Each element of vmaxsh is a half word.

Each signed-integer element in vA is compared to the corresponding signed-integer
element in vB. The larger of the two signed-integer values is placed into the corresponding
element of vD.

Other registers altered:

• None

Figure 6-46 shows the usage of the vmaxsh instruction. Each of the eight elements in the
vectors, vA, vB, and vD, is 16 bits longlong.

Figure 6-46. vmaxsh—Maximum of Eight Signed Integer Elements (16-Bit)

04 vD vA vB 322

0 5 6 10 11 15 16 20 21 31

≥si≥si≥si≥si≥si≥si≥si≥si

vA

vB

vD
6-74 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vmaxsw vmaxsw
Vector Maximum Signed Word

vmaxsw vD,vA,vB Form: VX

do i=0 to 127 by 32

if (vA)i:i+31 ≥si (vB)i:i+31
 then vDi:i+31 ← (vA)i:i+31
 else vDi:i+31 ← (vB)i:i+31

end

Each element of vmaxsw is a word.

Each signed-integer element in vA is compared to the corresponding signed-integer
element in vB. The larger of the two signed-integer values is placed into the corresponding
element of vD.

Other registers altered:

• None

Figure 6-47 shows the usage of the vmaxsw instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-47. vmaxsw—Maximum of Four Signed Integer Elements (32-Bit)

04 vD vA vB 386

0 5 6 10 11 15 16 20 21 31

≥si≥si≥si≥si

vA

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-75

AltiVec Technology Programming Environments Manual
vmaxub vmaxub
Vector Maximum Signed Byte

vmaxub vD,vA,vB Form: VX

do i=0 to 127 by 8

if (vA)i:i+7 ≥ui (vB)i:i+7
 then vDi:i+7 ← (vA)i:i+7
 else vDi:i+7 ← (vB)i:i+7

end

Each element of vmaxub is a byte.

Each unsigned-integer element in vA is compared to the corresponding unsigned-integer
element in vB. The larger of the two unsigned-integer values is placed into the
corresponding element of vD.

Other registers altered:

• None

Figure 6-48 shows the usage of the vmaxub instruction. Each of the sixteen elements in the
vectors, vA, vB, and vD, is 8 bits long.

Figure 6-48. vmaxub—Maximum of Sixteen Unsigned Integer Elements (8-Bit)

04 vD vA vB 2

0 5 6 10 11 15 16 20 21 31

≥ui ≥ui≥ui≥ui≥ui≥ui≥ui≥ui≥ui≥ui≥ui≥ui≥ui≥ui≥ui≥ui

vA

vB

vD
6-76 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vmaxuh vmaxuh
Vector Maximum Unsigned Half Word

vmaxuh vD,vA,vB Form: VX

do i=0 to 127 by 16

if (vA)i:i+15 ≥ui (vB)i:i+15
 then vDi:i+15 ← (vA)i:i+15
 else vDi:i+15 ← (vB)i:i+15

end

Each element of vmaxuh is a half word.

Each unsigned-integer element in vA is compared to the corresponding unsigned-integer
element in vB. The larger of the two unsigned-integer values is placed into the
corresponding element of vD.

Other registers altered:

• None

Figure 6-49 shows the usage of the vmaxuh instruction. Each of the eight elements in the
vectors, vA, vB, and vD, is 16 bits long.

Figure 6-49. vmaxuh—Maximum of Eight Unsigned Integer Elements (16-Bit)

04 vD vA vB 66

0 5 6 10 11 15 16 20 21 31

≥ui≥ui≥ui≥ui≥ui≥ui≥ui≥ui

vA

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-77

AltiVec Technology Programming Environments Manual
vmaxuw vmaxuw
Vector Maximum Unsigned Word

vmaxuw vD,vA,vB Form: VX

do i=0 to 127 by 32

if (vA)i:i+31 ≥ui (vB)i:i+31
 then vDi:i+31 ← (vA)i:i+31
 else vDi:i+31 ← (vB)i:i+31

end

Each element of vmaxuw is a word.

Each unsigned-integer element in vA is compared to the corresponding unsigned-integer
element in vB. The larger of the two unsigned-integer values is placed into the
corresponding element of vD.

Other registers altered:

• None

Figure 6-50 shows the usage of the vmaxuw instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-50. vmaxuw—Maximum of Four Unsigned Integer Elements (32-Bit)

04 vD vA vB 130

0 5 6 10 11 15 16 20 21 31

≥ui≥ui≥ui≥ui

vA

vB

vD
6-78 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vmhaddshs vmhaddshs
Vector Multiply High and Add Signed Half Word Saturate

vmhaddshs vD,vA,vB,vC Form: VA

do i=0 to 127 by 16

prod0:31← (vA)i:i+15 *si (vB)i:i+15
 temp0:16← prod0:16 +int SignExtend((vC)i:i+15,17)
 vDi:i+15← SItoSIsat(temp0:16,16)

end

Each signed-integer half word element in vA is multiplied by the corresponding
signed-integer half word element in vB, producing a 32-bit signed-integer product. Bits
0-16 of the intermediate product are added to the corresponding signed-integer half-word
element in vC after they have been sign extended to 17-bits. The 16-bit saturated result from
each of the eight 17-bit sums is placed in register vD.

If the intermediate result is greater than (215-1) it saturates to (215-1) and if it is less than
(-215) it saturates to (-215).

The signed-integer result is placed into the corresponding half-word element of vD.

Other registers altered:

• Vector status and control register (VSCR):

Affected: SAT

Figure 6-51 shows the usage of the vmhaddshs instruction. Each of the eight elements in
the vectors, vA, vB, vC, and vD, is 16 bits long.

Figure 6-51. vmhaddshs—Multiply-High and Add Eight Signed Integer Elements
(16-Bit)

04 vD vA vB vC 32

0 5 6 10 11 15 16 20 21 25 26 31

+

S

vA

vB

Prod

vC

Temp

vD

* * * * * * * *

+

S

Sat

1716

16
+

S

+

S

+

S

+

S

+

S

+

S

MOTOROLA Chapter 6. AltiVec Instructions 6-79

AltiVec Technology Programming Environments Manual
vmhraddshs vmhraddshs
Vector Multiply High Round and Add Signed Half Word Saturate

vmhraddshs vD,vA,vB,vC Form: VA

do i=0 to 127 by 16

prod0:31 ← (vA)i:i+15 *si (vB)i:i+15

prod0:31 ← prod0:31 +int 0x0000_4000
temp0:16 ← prod0:16 +int SignExtend((vC)i:i+15,17)

(vD)i:i+15 ← SItoSIsat(temp0:16,16)

end

Each signed integer halfword element in register vA is multiplied by the corresponding
signed integer halfword element in register vB, producing a 32-bit signed integer product.
The value 0x0000_4000 is added to the product, producing a 32-bit signed integer sum. Bits
0—16 of the sum are added to the corresponding signed integer halfword element in
register vD.

If the intermediate result is greater than (215-1) it saturates to (215-1) and if it is less than
(-215) it saturates to (-215).

The signed integer result is and placed into the corresponding halfword element of register
vD.

Figure 6-52 shows the usage of the vmhraddshs instruction. Each of the eight elements in
the vectors, vA, vB, vC, and vD, is 16 bits long.

Figure 6-52. vmhraddshs—Multiply-High Round and Add Eight Signed Integer
Elements (16-Bit)

04 vD vA vB vC 33

0 5 6 10 11 15 16 20 21 25 26 31

+

vA

vB

Prod

Const

Temp

vD

* * * * * * * *

+

Sat

1716

16
+ + ++++

0......01

S vCS S S SSSS
18

0......01 0......01 0......01 0......01 0......01 0......01 0......01
6-80 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vminfp vminfp
Vector Minimum Floating Point

vminfp vD,vA,vB Form: VX

do i=0 to 127 by 32

if (vA)i:i+31 <fp (vB)i:i+31
 then vDi:i+31 ← (vA)i:i+31
 else vDi:i+31 ← (vB)i:i+31

end

Each single-precision floating-point word element in register vA is compared to the
corresponding single-precision floating-point word element in register vB. The smaller of
the two single-precision floating-point values is placed into the corresponding word
element of register vD.

The minimum of + 0.0 and - 0.0 is - 0.0. The minimum of any value and a NaN is a QNaN.

If VSCR[NJ] = 1, every denormalized operand element is truncated to 0 before the
comparison is made.

Figure 6-53 shows the usage of the vminfp instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-53. vminfp—Minimum of Four Floating-Point Elements (32-Bit)

04 vD vA vB 1098

0 5 6 10 11 15 16 20 21 31

<fp<fp<fp<fp

vA

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-81

AltiVec Technology Programming Environments Manual
vminsb vminsb
Vector Minimum Signed Byte

vminsb vD,vA,vB Form: VX

do i=0 to 127 by 8

if (vA)i:i+7 <si (vB)i:i+7
 then vDi:i+7 ← (vA)i:i+7
 else vDi:i+7 ← (vB)i:i+7

end

Each element of vminsb is a byte.

Each signed-integer element in vA is compared to the corresponding signed-integer
element in vB. The larger of the two signed-integer values is placed into the corresponding
element of vD.

Other registers altered:

• None

Figure 6-54 shows the usage of the vminsb instruction. Each of the sixteen elements in the
vectors, vA, vB, and vD, is 8 bits long.

Figure 6-54. vminsb—Minimum of Sixteen Signed Integer Elements (8-Bit)

04 vD vA vB 770

0 5 6 10 11 15 16 20 21 31

<si <si<si<si<si<si<si<si<si<si<si<si<si<si<si<si

vA

vB

vD
6-82 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vminsh vminsh
Vector Minimum Signed Half Word

vminsh vD,vA,vB Form: VX

do i=0 to 127 by 16

if (vA)i:i+15<si (vB)i:i+15
 then vDi:i+15 ← (vA)i:i+15
 else vDi:i+15 ← (vB)i:i+15

end

Each element of vminsh is a half word.

Each signed-integer element in vA is compared to the corresponding signed-integer
element in vB. The larger of the two signed-integer values is placed into the corresponding
element of vD.

Other registers altered:

• None

Figure 6-55 shows the usage of the vminsh instruction. Each of the eight elements in the
vectors, vA, vB, and vD, is 16 bits long.

Figure 6-55. vminsh—Minimum of Eight Signed Integer Elements (16-Bit)

04 vD vA vB 834

0 5 6 10 11 15 16 20 21 31

<si<si<si<si<si<si<si<si

vA

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-83

AltiVec Technology Programming Environments Manual
vminsw vminsw
Vector Minimum Signed Word

vminsw vD,vA,vB Form: VX

do i=0 to 127 by 32

if (vA)i:i+31 <si (vB)i:i+31
 then vDi:i+31 ← (vA)i:i+31
 else vDi:i+31 ← (vB)i:i+31

end

Each element of vminsw is a word.

Each signed-integer element in vA is compared to the corresponding signed-integer
element in vB. The larger of the two signed-integer values is placed into the corresponding
element of vD.

Other registers altered:

• None

Figure 6-56 shows the usage of the vminsw instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-56. vminsw—Minimum of Four Signed Integer Elements (32-Bit)

04 vD vA vB 898

0 5 6 10 11 15 16 20 21 31

<si<si<si<si

vA

vB

vD
6-84 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vminub vminub
Vector Minimum Unsigned Byte

vminub vD,vA,vB Form: VX

do i=0 to 127 by 8

if (vA)i:i+7 <ui (vB)i:i+7
 then vDi:i+7 ← (vA)i:i+7
 else vDi:i+7 ← (vB)i:i+7

end

Each element of vminub is a byte.

Each unsigned-integer element in vA is compared to the corresponding unsigned-integer
element in vB. The larger of the two unsigned-integer values is placed into the
corresponding element of vD.

Other registers altered:

• None

Figure 6-57 shows the usage of the vminub instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-57. vminub—Minimum of Sixteen Unsigned Integer Elements (8-Bit)

04 vD vA vB 514

0 5 6 10 11 15 16 20 21 31

<ui <ui<ui<ui<ui<ui<ui<ui<ui<ui<ui<ui<ui<ui<ui<ui

vA

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-85

AltiVec Technology Programming Environments Manual
vminuh vminuh
Vector Minimum Unsigned Half Word

vminuh vD,vA,vB Form: VX

do i=0 to 127 by 16

if (vA)i:i+15 <ui (vB)i:i+15
 then vDi:i+15 ← (vA)i:i+15
 else vDi:i+15 ← (vB)i:i+15

end

Each element of vminuh is a half word.

Each unsigned-integer element in vA is compared to the corresponding unsigned-integer
element in vB. The larger of the two unsigned-integer values is placed into the
corresponding element of vD.

Other registers altered:

• None

Figure 6-58 shows the usage of the vminuh instruction. Each of the eight elements in the
vectors, vA, vB, and vD, is 16 bits long.

Figure 6-58. vminuh—Minimum of Eight Unsigned Integer Elements (16-Bit)

04 vD vA vB 578

0 5 6 10 11 15 16 20 21 31

<ui<ui<ui<ui<ui<ui<ui<ui

vA

vB

vD
6-86 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vminuw vminuw
Vector Minimum Unsigned Word

vminuw vD,vA,vB Form: VX

do i=0 to 127 by 32

if (vA)i:i+31 <ui (vB)i:i+31
 then vDi:i+31 ← (vA)i:i+31
 else vDi:i+31 ← (vB)i:i+31

end

Each element of vminuw is a word.

Each unsigned-integer element in vA is compared to the corresponding unsigned-integer
element in vB. The larger of the two unsigned-integer values is placed into the
corresponding element of vD.

Other registers altered:

• None

Figure 6-59 shows the usage of the vminuw instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-59. vminuw—Minimum of Four Unsigned Integer Elements (32-Bit)

04 vD vA vB 642

0 5 6 10 11 15 16 20 21 31

<ui<ui<ui<ui

vA

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-87

AltiVec Technology Programming Environments Manual
vmladduhm vmladduhm
Vector Multiply Low and Add Unsigned Half Word Modulo

vmladduhm vD,vA,vB,vC Form: VA

do i=0 to 127 by 16

prod0:31← (vA)i:i+15 *ui (vB)i:i+15
vDi:i+15← prod0:31 +int (vC)i:i+15

end

Each integer half-word element in vA is multiplied by the corresponding integer half-word
element in vB, producing a 32-bit integer product. The product is added to the
corresponding integer half-word element in vC. The integer result is placed into the
corresponding half-word element of vD.

Note that vmladduhm can be used for unsigned or signed integers.

Other registers altered:

• None

Figure 6-60 shows the usage of the vmladduhm instruction. Each of the eight elements in
the vectors, vA, vB, vC, and vD, is 16 bits long.

Figure 6-60. vmladduhm—Multiply-Add of Eight Integer Elements (16-Bit)

04 vD vA vB vC 34

0 5 6 10 11 15 16 20 21 25 26 31

+

vA

vB

Prod

vC

Temp

vD

* * * * * * * *

+ + + ++++
6-88 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vmrghb vmrghb
Vector Merge High Byte

vmrghb vD,vA,vB Form: VX

do i=0 to 63 by 8

vDi*2:(i*2)+15 ← (vA)i:i+7 || (vB)i:i+7

end

Each element of vmrghb is a byte.

The elements in the high-order half of vA are placed, in the same order, into the
even-numbered elements of vD. The elements in the high-order half of vB are placed, in the
same order, into the odd-numbered elements of vD.

Other registers altered:

• None

Figure 6-61 shows the usage of the vmrghb instruction. Each of the sixteen elements in the
vectors, vA, vB, and vD, is 8 bits long.

Figure 6-61. vmrghb—Merge Eight High-Order Elements (8-Bit)

04 vD vA vB 12

0 5 6 10 11 15 16 20 21 31

vA

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-89

AltiVec Technology Programming Environments Manual
vmrghh vmrghh
Vector Merge High Half word

vmrghh vD,vA,vB Form: VX

do i=0 to 63 by 16

vDi*2:(i*2)+31 ← (vA)i:i+15 || (vB)i:i+15

end

Each element of vmrghh is a half word.

The elements in the high-order half of vA are placed, in the same order, into the
even-numbered elements of vD. The elements in the high-order half of vB are placed, in the
same order, into the odd-numbered elements of vD.

Other registers altered:

• None

Figure 6-62 shows the usage of the vmrghh instruction. Each of the eight elements in the
vectors, vA, vB, and vD, is 16 bits long.

Figure 6-62. vmrghh—Merge Four High-Order Elements (16-Bit)

04 vD vA vB 76

0 5 6 10 11 15 16 20 21 31

vA

vB

vD
6-90 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vmrghw vmrghw
Vector Merge High Word

vmrghw vD,vA,vB Form: VX

do i=0 to 63 by 32

vDi*2:(i*2)+63 ← (vA)i:i+31 || (vB)i:i+31

end

Each element of vmrghw is a word.

The elements in the high-order half of vA are placed, in the same order, into the
even-numbered elements of vD. The elements in the high-order half of vB are placed, in the
same order, into the odd-numbered elements of vD.

Other registers altered:

• None

Figure 6-63 shows the usage of the vmrghw instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-63. vmrghw—Merge Four High-Order Elements (32-Bit)

04 vD vA vB 140

0 5 6 10 11 15 16 20 21 31

vA

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-91

AltiVec Technology Programming Environments Manual
vmrglb vmrglb
Vector Merge Low Byte

vmrglb vD,vA,vB Form: VX

do i=0 to 63 by 8

vDi*2:(i*2)+15 ← (vA)i+64:i+71 || (vB)i+64:i+71

end

Each element offer vmrglb is a byte.

The elements in the low-order half of vA are placed, in the same order, into the
even-numbered elements of vD. The elements in the low-order half of vB are placed, in the
same order, into the odd-numbered elements of vD.

Other registers altered:

• None

Figure 6-64 shows the usage of the vmrglb instruction. Each of the sixteen elements in the
vectors, vA, vB, and vD, is 8 bits long.

Figure 6-64. vmrglb—Merge Eight Low-Order Elements (8-Bit)

04 vD vA vB 268

0 5 6 10 11 15 16 20 21 31

vA

vB

vD
6-92 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vmrglh vmrglh
Vector Merge Low Half Word

vmrglh vD,vA,vB Form: VX

do i=0 to 63 by 16

vDi*2:(i*2)+31 ← (vA)i+64:i+79 || (vB)i+64:i+79

end

Each element of vmrglh is a half word.

The elements in the low-order half of vA are placed, in the same order, into the
even-numbered elements of vD. The elements in the low-order half of vB are placed, in the
same order, into the odd-numbered elements of vD.

Other registers altered:

• None

Figure 6-65 shows the usage of the vmrglh instruction. Each of the eight elements in the
vectors, vA, vB, and vD, is 16 bits long.

Figure 6-65. vmrglh—Merge Four Low-Order Elements (16-Bit)

04 vD vA vB 332

0 5 6 10 11 15 16 20 21 31

vA

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-93

AltiVec Technology Programming Environments Manual
vmrglw vmrglw
Vector Merge Low Word

vmrglw vD,vA,vB Form: VX

do i=0 to 63 by 32

vDi*2:(i*2)+63 ← (vA)i+64:i+95 || (vB)i+64:i+95

end

Each element of vmrglw is a word.

The elements in the low-order half of vA are placed, in the same order, into the
even-numbered elements of vD. The elements in the low-order half of vB are placed, in the
same order, into the odd-numbered elements of vD.

Other registers altered:

• None

Figure 6-66 shows the usage of the vmrglw instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-66. vmrglw—Merge Four Low-Order Elements (32-Bit)

04 vD vA vB 396

0 5 6 10 11 15 16 20 21 31

vA

vB

vD
6-94 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vmsummbm vmsummbm
Vector Multiply Sum Mixed-Sign Byte Modulo

vmsummbm vD,vA,vB,vC Form: VA

do i=0 to 127 by 32

temp0:31 ← (vC)i:i+31
 do j=0 to 31 by 8

prod0:15 ← (vA)i+j:i+j+7 *sui (vB)i+j:i+j+7
temp0:31 ← temp0:31 +int SignExtend(prod0:15,32)
end

vDi:i+31 ← temp0:31

end

For each word element in vC the following operations are performed in the order shown.

• Each of the four signed-integer byte elements contained in the corresponding word
element of vA is multiplied by the corresponding unsigned-integer byte element in
vB, producing a signed-integer 16-bit product.

• The signed-integer modulo sum of these four products is added to the signed-integer
word element in vC.

• The signed-integer result is placed into the corresponding word element of vD.

Other registers altered:

• None

Figure 6-67 shows the usage of the vmsummbm instruction. Each of the sixteen elements
in the vectors, vA, and vB, are 8 bits long. Each of the four elements in the vectors, vC and
vD are 32 bits long.

Figure 6-67. vmsummbm—Multiply-Sum of Integer Elements (8-Bit to 32-Bit)

04 vD vA vB vC 37

0 5 6 10 11 15 16 20 21 25 26 31

vA

vB

Prod

vC

vD

* * * * * * * * * * * * * * * *

+ + + +
MOTOROLA Chapter 6. AltiVec Instructions 6-95

AltiVec Technology Programming Environments Manual
vmsumshm vmsumshm
Vector Multiply Sum Signed Half Word Modulo

vmsumshm vD,vA,vB,vC Form: VA

do i=0 to 127 by 32

temp0:31 ← (vC)i:i+31
 do j=0 to 31 by 16

prod0:31 ← (vA)i+j:i+j+15 *si (vB)i+j:i+j+15
temp0:31 ← temp0:31 +int prod0:31
vDi:i+31 ← temp0:31

end

end

For each word element in vC the following operations are performed in the order shown.

• Each of the two signed-integer half-word elements contained in the corresponding
word element of vA is multiplied by the corresponding signed-integer half-word
element in vB, producing a signed-integer 32-bit product.

• The signed-integer modulo sum of these two products is added to the signed-integer
word element in vC.

• The signed-integer result is placed into the corresponding word element of vD.

Other registers altered:

• None

Figure 6-68 shows the usage of the vmsumshm instruction. Each of the eight elements in
the vectors, vA, and vB, are 16 bits long. Each of the four elements in the vectors, vC and
vD are 32 bits long.

Figure 6-68. vmsumshm—Multiply-Sum of Signed Integer Elements
(16-Bit to 32-Bit)

04 vD vA vB vC 40

0 5 6 10 11 15 16 20 21 25 26 31

vA

vB

Prod

vC

vD

* * * * * * *

+ + + +

*

6-96 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vmsumshs vmsumshs
Vector Multiply Sum Signed Half Word Saturate

vmsumshs vD,vA,vB,vC Form: VA

do i=0 to 127 by 32

temp0:33 ← SignExtend((vC)i:i+31,34)
 do j=0 to 31 by 16

prod0:31 ← (vA)i+j:i+j+15 *si (vB)i+j:i+j+15
temp0:33 ← temp0:33 +int SignExtend(prod0:31,34)
vDi:i+31 ← SItoSIsat(temp0:33,32)

end

end

For each word element in vC the following operations are performed in the order shown.

• Each of the two signed-integer half-word elements in the corresponding word
element of vA is multiplied by the corresponding signed-integer half-word element
in vB, producing a signed-integer 32-bit product.

• The signed-integer sum of these two products is added to the signed-integer word
element in vC.

• If this intermediate result is greater than (231-1) it saturates to (231-1) and if it is less
than -231 it saturates to -231.

• The signed-integer result is placed into the corresponding word element of vD.

Other registers altered:
• SAT

Figure 6-69 shows the usage of the vmsumshs instruction. Each of the eight elements in
the vectors, vA, and vB, are 16 bits long. Each of the four elements in the vectors, vC and
vD are 32 bits long.

Figure 6-69. vmsumshs—Multiply-Sum of Signed Integer Elements
(16-Bit to 32-Bit)

04 vD vA vB vC 41

0 5 6 10 11 15 16 20 21 25 26 31

vA

vB

Prod

vC

vD

* * * * * * *

+ + + +

*

MOTOROLA Chapter 6. AltiVec Instructions 6-97

AltiVec Technology Programming Environments Manual
vmsumubm vmsumubm
Vector Multiply Sum Unsigned Byte Modulo

vmsumubm vD,vA,vB,vC Form: VA

do i=0 to 127 by 32

temp0:31 ← (vC)i:i+31
 do j=0 to 31 by 8

prod0:15 ← (vA)i+j:i+j+7 *ui (vB)i+j:i+j+7
temp0:32 ← temp0:32 +int ZeroExtend(prod0:15,32)
vDi:i+31 ← temp0:31

end

end

For each word element in vC the following operations are performed in the order shown.

• Each of the four unsigned-integer byte elements contained in the corresponding
word element of vA is multiplied by the corresponding unsigned-integer byte
element in vB, producing an unsigned-integer 16-bit product.

• The unsigned-integer modulo sum of these four products is added to the
unsigned-integer word element in vC.

• The unsigned-integer result is placed into the corresponding word element of vD.

Other registers altered:

• None

Figure 6-70 shows the usage of the vmsumubm instruction. Each of the sixteen elements
in the vectors, vA, and vB, are 8 bits long. Each of the four elements in the vectors, vC and
vD are 32 bits long.

Figure 6-70. vmsumubm—Multiply-Sum of Unsigned Integer Elements
(8-Bit to 32-Bit)

04 vD vA vB vC 36

0 5 6 10 11 15 16 20 21 25 26 31

vA

vB

Prod

vC

vD

* * * * * * * * * * * * * * * *

+ + + +
6-98 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vmsumuhm vmsumuhm
Vector Multiply Sum Unsigned Half Word Modulo

vmsumuhm vD,vA,vB,vC Form: VA

do i=0 to 127 by 32

temp0:31 ← (vC)i:i+31
 do j=0 to 31 by 16

prod0:31 ← (vA)i+j:i+j+15 *ui (vB)i+j:i+j+15
temp0:31 ← temp0:31 +int prod0:31
vDi:i+31 ← temp2:33

end

end

For each word element in vC the following operations are performed in the order shown.

• Each of the two unsigned-integer half-word elements contained in the corresponding
word element of vA is multiplied by the corresponding unsigned-integer half-word
element in vB, producing a unsigned-integer 32-bit product.

• The unsigned-integer sum of these two products is added to the unsigned-integer
word element in vC.

• The unsigned-integer result is placed into the corresponding word element of vD.

Other registers altered:

• None

Figure 6-71 shows the usage of the vmsumuhm instruction. Each of the eight elements in
the vectors, vA, and vB, are 16 bits long. Each of the four elements in the vectors, vC and
vD are 32 bits long.

Figure 6-71. vmsumuhm—Multiply-Sum of Unsigned Integer Elements
(16-Bit to 32-Bit)

04 vD vA vB vC 38

0 5 6 10 11 15 16 20 21 25 26 31

vA

vB

Prod

vC

vD

* * * * * * *

+ + + +

*

MOTOROLA Chapter 6. AltiVec Instructions 6-99

AltiVec Technology Programming Environments Manual
vmsumuhs vmsumuhs
Vector Multiply Sum Unsigned Half Word Saturate

vmsumuhs vD,vA,vB,vC Form: VA

do i=0 to 127 by 32

temp0:33 ← ZeroExtend((vC)i:i+31,34)
 do j=0 to 31 by 16

prod0:31 ← (vA)i+j:i+j+15 *ui (vB)i+j:i+j+15
temp0:33 ← temp0:33 +int ZeroExtend(prod0:31,34)
vDi:i+31 ← UItoUIsat(temp0:33,32)

end

end

For each word element in vC the following operations are performed in the order shown.

• Each of the two unsigned-integer half-word elements contained in the corresponding
word element of vA is multiplied by the corresponding unsigned-integer half-word
element in vB, producing an unsigned-integer 32-bit product.

• The unsigned-integer sum of these two products is saturate-added to the
unsigned-integer word element in vC.

• The unsigned-integer result is placed into the corresponding word element of vD.

Other registers altered:

• SAT

Figure 6-72 shows the usage of the vmsumuhs instruction. Each of the eight elements in
the vectors, vA, and vB, are 16 bits long. Each of the four elements in the vectors, vC and
vD are 32 bits long.

Figure 6-72. vmsumuhs—Multiply-Sum of Unsigned Integer Elements
(16-Bit to 32-Bit)

04 vD vA vB vC 39

0 5 6 10 11 15 16 20 21 25 26 31

vA

vB

Prod

vC

vD

* * * * * * *

+ + + +

*

6-100 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vmulesb vmulesb
Vector Multiply Even Signed Byte

vmulesb vD,vA,vB Form: VX

do i=0 to 127 by 16

prod0:15← (vA)i:i+7 *si (vB)i:i+7
 vDi:i+15← prod0:15

end

Each even-numbered signed-integer byte element in vA is multiplied by the corresponding
signed-integer byte element in vB. The eight 16-bit signed-integer products are placed, in
the same order, into the eight half-words of vD.

Other registers altered:

• None

Figure 6-73 shows the usage of the vmulesb instruction. Each of the sixteen elements in
the vectors, vA, and vB, is 8 bits long. Each of the eight elements in the vector vD, is 16
bits long.

Figure 6-73. vmulesb—Even Multiply of Eight Signed Integer Elements (8-Bit)

04 vD vA vB 776

0 5 6 10 11 15 16 20 21 31

** * * * * * *

vA

vB

vD

ØØØØØØØØ

ØØØØØØØØ
MOTOROLA Chapter 6. AltiVec Instructions 6-101

AltiVec Technology Programming Environments Manual
vmulesh vmulesh
Vector Multiply Even Signed Half Word

vmulesh vD,vA,vB Form: VX

do i=0 to 127 by 32

prod0:31← (vA)i:i+15 *si (vB)i:i+15
vDi:i+31← prod0:31

end

Each even-numbered signed-integer half-word element in vA is multiplied by the
corresponding signed-integer half-word element in vB. The four 32-bit signed-integer
products are placed, in the same order, into the four words of vD.

Other registers altered:

• None

Figure 6-74 shows the usage of the vmulesh instruction. Each of the eight elements in the
vectors, vA, and vB, is 16 bits long. Each of the four elements in the vector vD, is 32 bits
long.

Figure 6-74. vmulesb—Even Multiply of Four Signed Integer Elements (16-Bit)

04 vD vA vB 840

0 5 6 10 11 15 16 20 21 31

ØØØØ

*

vA

vB

vD

ØØØØ

6-102 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vmuleub vmuleub
Vector Multiply Even Unsigned Byte

vmuleub vD,vA,vB Form: VX

do i=0 to 127 by 16

prod0:15 ← (vA)i:i+7 *ui (vB)i:i+7
(vD)i:i+15 ← prod0:15

end

Each even-numbered unsigned-integer byte element in register vA is multiplied by the
corresponding unsigned-integer byte element in register vB. The eight 16-bit
unsigned-integer products are placed, in the same order, into the eight halfwords of register
vD.

Other registers altered:

• None

Figure 6-75 shows the usage of the vmuleub instruction. Each of the sixteen elements in
the vectors, vA, and vB, is 8 bits long. Each of the eight elements in the vector vD, is 16
bits long.

Figure 6-75. vmuleub—Even Multiply of Eight Unsigned Integer Elements (8-Bit)

04 vD vA vB 520

0 5 6 10 11 15 16 20 21 31

** * * * * * *

vA

vB

vD

ØØØØØØØØ

ØØØØØØØØ
MOTOROLA Chapter 6. AltiVec Instructions 6-103

AltiVec Technology Programming Environments Manual
vmuleuh vmuleuh
Vector Multiply Even Unsigned Half Word

vmuleuh vD,vA,vB Form: VX

do i=0 to 127 by 32

prod0:31 ← (vA)i:i+15 *ui (vB)i:i+15
(vD)i:i+31 ← prod0:31

end

Each even-numbered unsigned-integer halfword element in register vA is multiplied by the
corresponding unsigned-integer halfword element in register vB. The four 32-bit
unsigned-integer products are placed, in the same order, into the four words of register vD.

Other registers altered:

• None

Figure 6-76 shows the usage of the vmuleuh instruction. Each of the eight elements in the
vectors, vA, and vB, is 16 bits long. Each of the four elements in the vector vD, is 32 bits
long.

Figure 6-76. vmuleuh—Even Multiply of Four Unsigned Integer Elements (16-Bit)

04 vD vA vB 584

0 5 6 10 11 15 16 20 21 31

ØØØØ

*

vA

vB

vD

ØØØØ

6-104 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vmulosb vmulosb
Vector Multiply Odd Signed Byte

vmulosb vD,vA,vB Form: VX

do i=0 to 127 by 16

prod0:15← (vA)i+8:i+15 *si (vB)i+8:i+15
vDi:i+15← prod0:15

end

Each odd-numbered signed-integer byte element in vA is multiplied by the corresponding
signed-integer byte element in vB. The eight 16-bit signed-integer products are placed, in
the same order, into the eight half-words of vD.

Other registers altered:

• None

Figure 6-77 shows the usage of the vmulosb instruction. Each of the sixteen elements in
the vectors, vA, and vB, is 8 bits long. Each of the eight elements in the vector vD, is 16
bits long.

Figure 6-77. vmulosb—Odd Multiply of Eight Signed Integer Elements (8-Bit)

04 vD vA vB 264

0 5 6 10 11 15 16 20 21 31

* *******

vA

vB

vD

Ø Ø Ø Ø Ø Ø Ø Ø

Ø Ø Ø Ø Ø Ø Ø Ø
MOTOROLA Chapter 6. AltiVec Instructions 6-105

AltiVec Technology Programming Environments Manual
vmulosh vmulosh
Vector Multiply Odd Signed Half Word

vmulosh vD,vA,vB Form: VX

do i=0 to 127 by 32

prod0:31← (vA)i+16:i+31 *si (vB)i+16:i+31
vDi:i+31← prod0:31

end

Each odd-numbered signed-integer half-word element in vA is multiplied by the
corresponding signed-integer half-word element in vB. The four 32-bit signed-integer
products are placed, in the same order, into the four words of vD.

Other registers altered:

• None

Figure 6-78 shows the usage of the vmuleuh instruction. Each of the eight elements in the
vectors, vA, and vB, is 16 bits long. Each of the four elements in the vector vD, is 32 bits
long.

Figure 6-78. vmuleuh—Odd Multiply of Four Unsigned Integer Elements (16-Bit)

04 vD vA vB 328

0 5 6 10 11 15 16 20 21 31

Ø Ø Ø Ø

vA

vB

vD

Ø Ø Ø Ø
6-106 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vmuloub vmuloub
Vector Multiply Odd Unsigned Byte

vmuloub vD,vA,vB Form: VX

do i=0 to 127 by 8

prod0:15← (vA)i+8:i+15 *ui (vB)i+n:i+15
vDi:i+15← prod0:15

end

Each odd-numbered unsigned-integer byte element in vA is multiplied by the
corresponding unsigned-integer byte element in vB. The eight 16-bit unsigned-integer
products are placed, in the same order, into the eight half-word s of vD.

Other registers altered:

• None

Figure 6-79 shows the usage of the vmuloub instruction. Each of the sixteen elements in
the vectors, vA, and vB, is 8 bits long. Each of the eight elements in the vector vD, is 16
bits long.

Figure 6-79. vmuloub—Odd Multiply of Eight Unsigned Integer Elements (8-Bit)

04 vD vA vB 8

0 5 6 10 11 15 16 20 21 31

* *******

vA

vB

vD

Ø Ø Ø Ø Ø Ø Ø Ø

Ø Ø Ø Ø Ø Ø Ø Ø
MOTOROLA Chapter 6. AltiVec Instructions 6-107

AltiVec Technology Programming Environments Manual
vmulouh vmulouh
Vector Multiply Odd Unsigned Half Word

vmulouh vD,vA,vB Form: VX

do i=0 to 127 by 16

prod0:31← (vA)i+16:i+31 *ui (vB)i+n:i+311
vDi:i+31← prod0:31

end

Each odd-numbered unsigned-integer half-word element in vA is multiplied by the
corresponding unsigned-integer half-word element in vB. The four 32-bit unsigned-integer
products are placed, in the same order, into the four words of vD.

Other registers altered:

• None

Figure 6-80 shows the usage of the vmulouh instruction. Each of the eight elements in the
vectors, vA, and vB, is 16 bits long. Each of the four elements in the vector vD, is 32 bits
long.

Figure 6-80. vmulouh—Odd Multiply of Four Unsigned Integer Elements (16-Bit)

04 vD vA vB 72

0 5 6 10 11 15 16 20 21 31

Ø Ø Ø Ø

vA

vB

vD

Ø Ø Ø Ø
6-108 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vnmsubfp vnmsubfp
Vector Negative Multiply-Subtract Floating Point

vnmsubfp vD,vA,vC,vB Form: VA

do i=0 to 127 by 32

vDi:i+31 ← -RndToNearFP32(((vA)i:i+31 *fp (vC)i:i+31) -fp (vB)i:i+31)

end

Each single-precision floating-point word element in vA is multiplied by the corresponding
single-precision floating-point word element in vC. The corresponding single-precision
floating-point word element in vB is subtracted from the product. The sign of the difference
is inverted. The result is rounded to the nearest single-precision floating-point number and
placed into the corresponding word element of vD.

Note that only one rounding occurs in this operation. Also note that a QNaN result is not
negated.

Other registers altered:

• None

Figure 6-81 shows the usage of the vnmsubfp instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-81. vnmsubfp—Negative Multiply-Subtract of
Four Floating-Point Elements (32-Bit)

04 vD vA vB vC 47

0 5 6 10 11 15 16 20 21 25 26 31

-

vA

vC

Prod

vB

Invert

* * * *

- - -

vD

&
 Round
MOTOROLA Chapter 6. AltiVec Instructions 6-109

AltiVec Technology Programming Environments Manual
vnor vnor
Vector Logical NOR

vnor vD,vA,vB Form: VX

vD ← ¬((vA) | (vB))

The contents of vA are bitwise ORed with the contents of vB and the complemented result
is placed into vD.

Other registers altered:

• None

Simplified mnemonics:

vnot vD, vS equivalent to vnor vD, vS, vS

Figure 6-82 shows the usage of the vnor instruction.

Figure 6-82. vnor—Bitwise NOR of 128-bit Vector

04 vD vA vB 1284

0 5 6 10 11 15 16 20 21 31

|

vB

Intermediate

vA

vD

¬

6-110 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vor vor
Vector Logical OR

vor vD,vA,vB Form: VX

vD ← (vA) | (vB)

The contents of vA are ORed with the contents of vB and the result is placed into vD.

Other registers altered:

• None

Simplified mnemonics:

vmr vD, vS equivalent to vor vD, vS, vS

Figure 6-83 shows the usage of the vor instruction.

Figure 6-83. vor—Bitwise OR of 128-bit Vector

04 vD vA vB 1156

0 5 6 10 11 15 16 20 21 31

|

vB

vA

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-111

AltiVec Technology Programming Environments Manual
vperm vperm
Vector Permute

vperm vD,vA,vB,vC Form: VA

temp0:255 ← (vA) || (vB)
do i=0 to 127 by 8

b ← (vC)i+3:i+7 || 0b000
vDi:i+7 ← tempb:b+7

end

Let the source vector be the concatenation of the contents of vA followed by the contents
of vB. For each integer i in the range 0–15, the contents of the byte element in the source
vector specified in bits 3–7 of byte element i in vC are placed into byte element i of vD.

Other registers altered:

• None

Programming note: See the programming notes with the Load Vector for Shift Left and
Load Vector for Shift Right instructions for examples of usage on the vperm instruction.

Figure 6-84 shows the usage of the vperm instruction. Each of the sixteen elements in the
vectors, vA, vB, vC, and vD, is 8 bits long.

Figure 6-84. vperm—Concatenate Sixteen Integer Elements (8-Bit)

04 vD vA vB vC 43

0 5 6 10 11 15 16 20 21 25 26 31

vC1 14 18 10 16 15 19 1A 1C 1C 1C 13 8 1D 1B 0E

vA

vB

vD

0 1 2 3 4 5 6 7 8 9 A B C D E F

10 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1F11 1E
6-112 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vpkpx vpkpx
Vector Pack Pixel32

vpkpx vD,vA,vB Form: VX

do i=0 to 63 by 16

vDi ← (vA)i*2+7
vDi+1:i+5← (vA)(i*2)+8:(i*2)+12
vDi+6:i+10← (vA)(i*2)+16:(i*2)+20
vDi+11:i+15← (vA)((i*2)+24:(i*2)+28
vDi+64← (vB)(i*2)+7
vDi+65:i+69← (vB)(i*2)+8:(i*2)+12
vDi+70:i+74← (vB)(i*2)+16:(i*2)+20
vDi+75:i+79← (vB)(i*2)+24:(i*2)+28

end

The source vector is the concatenation of the contents of vA followed by the contents of
vB. Each 32-bit word element in the source vector is packed to produce a 16-bit half-word
value as described below and placed into the corresponding half-word element of vD. A
word is packed to 16 bits by concatenating, in order, the following bits.

• bit 7 of the first byte (bit 7 of the word)

• bits 0–4 of the second byte (bits 8–12 of the word)

• bits 0–4 of the third byte (bits 16–20 of the word)

• bits 0–4 of the fourth byte (bits 24–28 of the word)

Figure 6-85 shows which bits of the source word are packed to form the half word in the
destination register.

Figure 6-85. How a Word is Packed to a Half Word

04 vD vA vB 782

0 5 6 10 11 15 16 20 21 31

Source Word

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

vD Packed Half Word

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

7 8 9 10 11 12 12 17 18 19 20 24 25 26 27 28
MOTOROLA Chapter 6. AltiVec Instructions 6-113

AltiVec Technology Programming Environments Manual
Other registers altered:

• None

Programming note: Each source word can be considered to be a 32-bit pixel consisting of
four 8-bit channels. Each target half-word can be considered to be a 16-bit pixel consisting
of one 1-bit channel and three 5-bit channels. A channel can be used to specify the intensity
of a particular color, such as red, green, or blue, or to provide other information needed by
the application.

Figure 6-86 shows the usage of the vpkpx instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-86. vpkpx—Pack Eight Elements (32-Bit) to Eight Elements (16-Bit)

vA vB

vD
6-114 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vpkshss vpkshss
Vector Pack Signed Half Word Signed Saturate

vpkshss vD,vA,vB Form: VX

do i=0 to 63 by 8

vDi:i+7← SItoSIsat((vA)i*2:(i*2)+15,8)
vDi+64:i+71← SItoSIsat((vB)i*2:(i*2)+15,8)

end

Let the source vector be the concatenation of the contents of vA followed by the contents
of vB.

Each signed integer half-word element in the source vector is converted to an 8-bit signed
integer. If the value of the element is greater than (2 7 - 1) the result saturates to (27 - 1) and
if the value is less than -27 the result saturates to -27. The result is placed into the
corresponding byte element of vD.

Other registers altered:

• SAT

Figure 6-87 shows the usage of the vpkshss instruction. Each of the eight elements in the
vectors, vA, and vB, is 16 bits long. Each of the sixteen elements in the vector vD, is 8 bits
long.

Figure 6-87. vpkshss—Pack Sixteen Signed Integer Elements (16-Bit) to Sixteen
Signed Integer Elements (8-Bit)

04 vD vA vB 398

0 5 6 10 11 15 16 20 21 31

vA vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-115

AltiVec Technology Programming Environments Manual
vpkshus vpkshus
Vector Pack Signed Half Word Unsigned Saturate

vpkshus vD,vA,vB Form: VX

do i=0 to 63 by 8

vDi:i+7← SItoUIsat((vA)i*2:(i*2)+7,8)
vDi+64:i+71← SItoUIsat((vB)i*2:(i*2)+7,8)

end

Let the source vector be the concatenation of the contents of vA followed by the contents
of vB.

Each signed integer half-word element in the source vector is converted to an 8-bit unsigned
integer. If the value of the element is greater than (28 - 1) the result saturates to (28 - 1) and
if the value is less than 0 the result saturates to 0. The result is placed into the corresponding
byte element of vD.

Other registers altered:

• SAT

Figure 6-88 shows the usage of the vpkshus instruction. Each of the eight elements in the
vectors, vA, and vB, is 16 bits long. Each of the sixteen elements in the vector vD, is 8 bits
long.

Figure 6-88. vpkshus—Pack Sixteen Signed Integer Elements (16-Bit) to Sixteen
Unsigned Integer Elements (8-Bit)

04 vD vA vB 270

0 5 6 10 11 15 16 20 21 31

vA vB

vD
6-116 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vpkswss vpkswss
Vector Pack Signed Word Signed Saturate

vpkswss vD,vA,vB Form: VX

do i=0 to 63 by 16

vDi:i+15← SItoSIsat((vA)i*2:(i*2)+31,16)
vDi+64:i+79← SItoSIsat((vB)i*2:(i*2)+31,16)

end

Let the source vector be the concatenation of the contents of vA followed by the contents
of vB.

Each signed integer word element in the source vector is converted to a 16-bit signed
integer half word. If the value of the element is greater than (215 - 1) the result saturates to
(215 - 1) and if the value is less than -215 the result saturates to -215. The result is placed into
the corresponding half-word element of vD.

Other registers altered:

• SAT

Figure 6-89 shows the usage of the vpkswss instruction. Each of the four elements in the
vectors, vA, and vB, is 32 bits long. Each of the eight elements in the vector vD, is 16 bits
long.

g

Figure 6-89. vpkswss—Pack Eight Signed Integer Elements (32-Bit) to Eight Signed
Integer Elements (16-Bit)

04 vD vA vB 462

0 5 6 10 11 15 16 20 21 31

vA vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-117

AltiVec Technology Programming Environments Manual
vpkswus vpkswus
Vector Pack Signed Word Unsigned Saturate

vpkswus vD,vA,vB Form: VX

do i=0 to 63 by 16

vDi:i+15← SItoUIsat((vA)i*2:(i*2)+31,16)
vDi+64:i+79← SItoUIsat((vB)i*2:(i*2)+31,16)

end

Let the source vector be the concatenation of the contents of vA followed by the contents
of vB.

Each signed integer word element in the source vector is converted to a 16-bit unsigned
integer. If the value of the element is greater than (216 - 1) the result saturates to (216 - 1) and
if the value is less than 0 the result saturates to 0. The result is placed into the corresponding
half-word element of vD.

Other registers altered:

• SAT

Figure 6-90 shows the usage of the vpkswus instruction. Each of the four elements in the
vectors, vA, and vB, is 32 bits long. Each of the eight elements in the vector vD, is 16 bits
long.

Figure 6-90. vpkswus—Pack Eight Signed Integer Elements (32-Bit) to Eight
Unsigned Integer Elements (16-Bit)

04 vD vA vB 334

0 5 6 10 11 15 16 20 21 31

vA vB

vD
6-118 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vpkuhum vpkuhum
Vector Pack Unsigned Half Word Unsigned Modulo

vpkuhum vD,vA,vB Form: VX

do i=0 to 63 by 8

vDi:i+7← (vA)(i*2)+8:(i*2)+15
vDi+64:i+71← (vB)(i*2)+8:(i*2)+15

end

Let the source vector be the concatenation of the contents of vA followed by the contents
of vB.

The low-order byte of each half-word element in the source vector is placed into the
corresponding byte element of vD.

Other registers altered:

• None

Figure 6-91 shows the usage of the vpkuhum instruction. Each of the eight elements in the
vectors, vA, and vB, is 16 bits long. Each of the sixteen elements in the vector vD, is 8 bits
long.

Figure 6-91. vpkuhum—Pack Sixteen Unsigned Integer Elements (16-Bit)
to Sixteen Unsigned Integer Elements (8-Bit)

04 vD vA vB 14

0 5 6 10 11 15 16 20 21 31

vA vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-119

AltiVec Technology Programming Environments Manual
vpkuhus vpkuhus
Vector Pack Unsigned Half Word Unsigned Saturate

vpkuhus vD,vA,vB Form: VX

do i=0 to 63 by 8

vDi:i+7← UItoUIsat((vA)i*2:(i*2)+15,8)
vDi+64:i+71← UItoUIsat((vB)i*2:(i*2)+15,8)

end

Let the source vector be the concatenation of the contents of vA followed by the contents
of vB.

Each unsigned integer half-word element in the source vector is converted to an 8-bit
unsigned integer. If the value of the element is greater than (28 - 1) the result saturates to (28

- 1). The result is placed into the corresponding byte element of vD.

Other registers altered:

• SAT

Figure 6-92 shows the usage of the vpkuhus instruction. Each of the eight elements in the
vectors, vA, and vB, is 16 bits long. Each of the sixteen elements in the vector vD, is 8 bits
long.

Figure 6-92. vpkuhus—Pack Sixteen Unsigned Integer Elements (16-Bit)
to Sixteen Unsigned Integer Elements (8-Bit)

04 vD vA vB 142

0 5 6 10 11 15 16 20 21 31

vA vB

vD
6-120 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vpkuwum vpkuwum
Vector Pack Unsigned Word Unsigned Modulo

vpkuwum vD,vA,vB Form: VX

do i=0 to 63 by 16

vDi:i+15← (vA)(i*2)+16:(i*2)+31
vDi+64:i+79← (vB)(i*2)+16:(i*2)+31

end

Let the source vector be the concatenation of the contents of vA followed by the contents
of vB.

The low-order half-word of each word element in the source vector is placed into the
corresponding half-word element of vD.

Other registers altered:

• None

Figure 6-93 shows the usage of the vpkuwum instruction. Each of the four elements in the
vectors, vA, and vB, is 32 bits long. Each of the eight elements in the vector vD, is 16 bits
long.

Figure 6-93. vpkuwum—Pack Eight Unsigned Integer Elements (32-Bit)
to Eight Unsigned Integer Elements (16-Bit)

04 vD vA vB 78

0 5 6 10 11 15 16 20 21 31

vA vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-121

AltiVec Technology Programming Environments Manual
vpkuwus vpkuwus
Vector Pack Unsigned Word Unsigned Saturate

vpkuwus vD,vA,vB Form: VX

do i=0 to 63 by 16

vDi:i+15← UItoUIsat((vA)i*2:(i*2)+31,16)
vDi+64:i+79← UItoUIsat((vB)i*2:(i*2)+31,16)

end

Let the source vector be the concatenation of the contents of vA followed by the contents
of vB.

Each unsigned integer word element in the source vector is converted to a 16-bit unsigned
integer. If the value of the element is greater than (216 - 1) the result saturates to (216 - 1).
The result is placed into the corresponding half-word element of vD.

Other registers altered:

• SAT

Figure 6-94 shows the usage of the vpkuwus instruction. Each of the four elements in the
vectors, vA, and vB, is 32 bits long. Each of the eight elements in the vector vD, is 16 bits
long.

Figure 6-94. vpkuwum—Pack Eight Unsigned Integer Elements (32-Bit)
to Eight Unsigned Integer Elements (16-Bit)

04 vD vA vB 206

0 5 6 10 11 15 16 20 21 31

vA vB

vD
6-122 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vrefp vrefp
Vector Reciprocal Estimate Floating Point

vrefp vD,vB Form: VX

do i=0 to 127 by 32

x ← (vB)i:i+31

vDi:i+31 ← 1/x

end

The single-precision floating-point estimate of the reciprocal of each single-precision
floating-point element in vB is placed into the corresponding element of vD.

For results that are not a +0, -0, +∞, -∞, or QNaN, the estimate has a relative error in
precision no greater than one part in 4096, that is:

where x is the value of the element in vB. Note that the value placed into the element of vD
may vary between implementations, and between different executions on the same
implementation.

Operation with various special values of the element in vB is summarized below in
Table 6-7.

If VSCR[NJ] = 1, every denormalized operand element is truncated to a 0 of the same sign
before the operation is carried out, and each denormalized result element truncates to a 0 of
the same sign.

Other registers altered:

• None

04 vD 0_0000 vB 266

0 5 6 10 11 15 16 20 21 31

Table 6-7. Special Values of the Element in vB

Value Result

-∞ -0

-0 -∞

+0 +∞

+∞ +0

NaN QNaN

estimate 1 x⁄–
1 x⁄

--
1

4096
-------------≤
MOTOROLA Chapter 6. AltiVec Instructions 6-123

AltiVec Technology Programming Environments Manual
Figure 6-95 shows the usage of the vrefp instruction. Each of the four elements in the
vectors vB and vD is 32 bits long.

Figure 6-95. vrefp—Reciprocal Estimate of Four Floating-Point Elements (32-Bit)

1 / x1 / x1 /x1 /x

vB

vD

x x x x
6-124 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vrfim vrfim
Vector Round to Floating-Point Integer toward Minus Infinity

vrfim vD,vB Form: VX

do i=0 to 127 by 32

vDi:i+31 ← RndToFPInt32Floor((vB)i:i+31)

end

Each single-precision floating-point word element in vB is rounded to a single-precision
floating-point integer, using the rounding mode Round toward -Infinity, and placed into the
corresponding word element of vD.

Other registers altered:

• None

Figure 6-96 shows the usage of the vrfim instruction. Each of the four elements in the
vectors vB and vD is 32 bits long.

Figure 6-96. vrfim— Round to Minus Infinity of Four Floating-Point
Integer Elements (32-Bit)

04 vD 0_0000 vB 714

0 5 6 10 11 15 16 20 21 31

RndToFPInt32FloorRndToFPInt32FloorRndToFPInt32FloorRndToFPInt32Floor

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-125

AltiVec Technology Programming Environments Manual
vrfin vrfin
Vector Round to Floating-Point Integer Nearest

vrfin vD,vB Form: VX

do i=0 to 127 by 32

vDi:i+31 ← RndToFPInt32Near((vB)i:i+31)

end

Each single-precision floating-point word element in vB is rounded to a single-precision
floating-point integer, using the rounding mode Round to Nearest, and placed into the
corresponding word element of vD.

Note the result is independent of VSCR[NJ].

Other registers altered:

• None

Figure 6-97 shows the usage of the vrfin instruction. Each of the four elements in the
vectors vB and vD is 32 bits long.

Figure 6-97. vrfin—Nearest Round to Nearest of Four
Floating-Point Integer Elements (32-Bit)

04 vD 0_0000 vB 522

0 5 6 10 11 15 16 20 21 31

RndToFPInt32NearRndToFPInt32NearRndToFPInt32NeaRndToFPInt32Near

vB

vD
6-126 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vrfip vrfip
Vector Round to Floating-Point Integer toward Plus Infinity

vrfip vD,vB Form: VX

do i=0 to 127 by 32

vDi:i+31 ← RndToFPInt32Ceil((vB)i:i+31)

end

Each single-precision floating-point word element in vB is rounded to a single-precision
floating-point integer, using the rounding mode Round toward +Infinity, and placed into the
corresponding word element of vD.

If VSCR[NJ] = 1, every denormalized operand element is truncated to 0 before the
comparison is made.

Other registers altered:

• None

Figure 6-98 shows the usage of the vrfip instruction. Each of the four elements in the
vectors vB and vD is 32 bits long.

Figure 6-98. vrfip—Round to Plus Infinity of Four Floating-Point
Integer Elements (32-Bit)

04 vD 0_0000 vB 650

0 5 6 10 11 15 16 20 21 31

RndToFPInt32CeilRndToFPInt32CeilRndToFPInt32CeilRndToFPInt32Ceil

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-127

AltiVec Technology Programming Environments Manual
vrfiz vrfiz
Vector Round to Floating-Point Integer toward Zero

vrfiz vD,vB Form: VX

do i=0 to 127 by 32

vDi:i+31 ← RndToFPInt32Trunc((vB)i:i+31)

end

Each single-precision floating-point word element in vB is rounded to a single-precision
floating-point integer, using the rounding mode Round toward Zero, and placed into the
corresponding word element of vD.

Note, the result is independent of VSCR[NJ].

Other registers altered:

• None

Figure 6-99 shows the usage of the vrfiz instruction. Each of the four elements in the
vectors vB and vD is 32 bits long.

Figure 6-99. vrfiz—Round-to-Zero of Four Floating-Point Integer Elements (32-Bit)

04 vD 0_0000 vB 586

0 5 6 10 11 15 16 20 21 31

RndToFPInt32TruncRndToFPInt32TruncRndToFPInt32TruncRndToFPInt32Trunc

vB

vD
6-128 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vrlb vrlb
Vector Rotate Left Integer Byte

vrlb vD,vA,vB Form: VX

do i=0 to 127 by 8

sh ← (vB)i+5:i+7
vDi:i+7 ← ROTL((vA)i:i+7,sh)

end

Each element is a byte. Each element in vA is rotated left by the number of bits specified
in the low-order 3 bits of the corresponding element in vB. The result is placed into the
corresponding element of vD.

Other registers altered:

• None

Figure 6-100 shows the usage of the vrlb instruction. Each of the sixteen elements in the
vectors, vA, vB, and vD, is 8 bits long.

g

Figure 6-100. vrlb—Left Rotate of Sixteen Integer Elements (8-Bit)

04 vD vA vB 4

0 5 6 10 11 15 16 20 21 31

vA

vD

vB
MOTOROLA Chapter 6. AltiVec Instructions 6-129

AltiVec Technology Programming Environments Manual
vrlh vrlh
Vector Rotate Left Integer Half Word

vrlh vD,vA,vB Form: VX

do i=0 to 127 by 16

sh ← (vB)i+12:i+15
vDi:i+15 ← ROTL((vA)i:i+15,sh)

end

Each element is a half word

Each element in vA is rotated left by the number of bits specified in the low-order 4 bits of
the corresponding element in vB. The result is placed into the corresponding element of vD.

Other registers altered:

• None

Figure 6-101 shows the usage of the vrlh instruction. Each of the eight elements in the
vectors, vA, vB, and vD, is 16 bits long.

Figure 6-101. vrlh—Left Rotate of Eight Integer Elements (16-Bit)

04 vD vA vB 68

0 5 6 10 11 15 16 20 21 31

vA

vD

vB
6-130 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vrlw vrlw
Vector Rotate Left Integer Word

vrlw vD,vA,vB Form: VX

do i=0 to 127 by 32

sh ← (vB)i+27:i+31
vDi:i+31 ← ROTL((vA)i:i+31,sh)

end

Each element is a word. Each element in vA is rotated left by the number of bits specified
in the low-order 5 bits of the corresponding element in vB. The result is placed into the
corresponding element of vD.

Other registers altered:

• None

Figure 6-102 shows the usage of the vrlw instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-102. vrlw—Left Rotate of Four Integer Elements (32-Bit)

04 vD vA vB 132

0 5 6 10 11 15 16 20 21 31

vA

vD

vB
MOTOROLA Chapter 6. AltiVec Instructions 6-131

AltiVec Technology Programming Environments Manual
vrsqrtefp vrsqrtefp
Vector Reciprocal Square Root Estimate Floating Point

vrsqrtefp vD,vB Form: VX

do i=0 to 127 by 32

x ← (vB)i:i+31
vDi:i+31 ← 1 ÷fp (√fp(x))

end

The single-precision estimate of the reciprocal of the square root of each single-precision
element in vB is placed into the corresponding word element of vD. The estimate has a
relative error in precision no greater than one part in 4096, as explained below:

where x is the value of the element in vB. Note that the value placed into the element of vD
may vary between implementations and between different executions on the same
implementation. Operation with various special values of the element in vB is summarized
below in Table 6-8.

Other registers altered:

• None

Figure 6-103 shows the usage of the vrsqrtefp instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-103. vrsqrtefp—Reciprocal Square Root Estimate of Four Floating-Point
Elements (32-Bit)

04 vD 0_0000 vB 330

0 5 6 10 11 15 16 20 21 31

Table 6-8. Special Values of the Element in vB

Value Result Value Result

-∞ QNaN +0 +∞

less than 0 QNaN +∞ +0

-0 -∞ NaN QNaN

estimate 1 x⁄–

1 x⁄
--

1
4096
-------------≤

1 / √x

vB

vD

1 / √x1 / √x 1 / √x
6-132 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vsel vsel
Vector Conditional Select

vsel vD,vA,vB,vC Form: VA

do i=0 to 127

if (vC)i=0 then vDi ← (vA)i
 else vDi ← (vB)i

end

For each bit in vC that contains the value 0, the corresponding bit in vA is placed into the
corresponding bit of vD. For each bit in vC that contains the value 1, the corresponding bit
in vB is placed into the corresponding bit of vD.

Other registers altered:

• None

Figure 6-104 shows the usage of the vsel instruction. Each of the vectors, vA, vB, vC, and
vD, is 128 bits long.

Figure 6-104. vsel—Bitwise Conditional Select of Vector Contents(128-bit)

04 vD vA vB vC 42

0 5 6 10 11 15 16 20 21 25 26 31

vB

vA

vC0 1 0 0 1 1 0 0 • • • • • • • • • • •

vD

• • • • • • • • • • •

• • • • • • • • • • •

• • • • • • • • • • •

• • • • • • • • • • • •
MOTOROLA Chapter 6. AltiVec Instructions 6-133

AltiVec Technology Programming Environments Manual
vsl vsl
Vector Shift Left

vsl vD,vA,vB Form: VX

sh ← (vB)125:127
t ← 1
do i = 0 to 127 by 8

t ← t & ((vB)i+5:i+7 = sh)
if t = 1 then vD ← (vA) <<ui sh
else vD ← undefined

end

The contents of vA are shifted left by the number of bits specified in vB[125–127]. Bits
shifted out of bit 0 are lost. Zeros are supplied to the vacated bits on the right. The result is
placed into vD.

The contents of the low-order three bits of all byte elements in vB must be identical to
vB[125–127]; otherwise the value placed into vD is undefined.

Other registers altered:

• None

Figure 6-105 shows the usage of the vsl instruction.

Figure 6-105. vsl—Shift Bits Left in Vector (128-Bit)

04 vD vA vB 452

0 5 6 10 11 15 16 20 21 31

vA

vD

• • • • • • • • • •

*6 = sh = Shift Count

125 127

sh zeros

vB6*

 0_0000 0

Shift
6-134 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vslb vslb
Vector Shift Left Integer Byte

vslb vD,vA,vB Form: VX

do i=0 to 127 by 8

sh ← (vB)i+5):i+7
vDi:i+7 ← (vA)i:i+7 <<ui sh

end

Each element is a byte. Each element in vA is shifted left by the number of bits specified
in the low-order 3 bits of the corresponding element in vB. Bits shifted out of bit 0 of the
element are lost. Zeros are supplied to the vacated bits on the right. The result is placed into
the corresponding element of vD.

Other registers altered:

• None

Figure 6-106 shows the usage of the vslb instruction. Each of the sixteen elements in the
vectors, vA, vB, and vD, is 8 bits long.

Figure 6-106. vslb—Shift Bits Left in Sixteen Integer Elements (8-Bit)

04 vD vA vB 260

0 5 6 10 11 15 16 20 21 31

666 66666 666666 vB

vA

vD

*6 = sh = Shift Count

*6

125 127

0...0

sh

6

0..00..00..00..00..00..00..00..00..00..00..00..00..00..00..0

zeros
MOTOROLA Chapter 6. AltiVec Instructions 6-135

AltiVec Technology Programming Environments Manual
vsldoi vsldoi
Vector Shift Left Double by Octet Immediate

vsldoi vD, vA, vB, SHB Form: VA

vD ← ((vA) || (vB)) <<ui (SHB || 0b000)

Let the source vector be the concatenation of the contents of vA followed by the contents
of vB. Bytes SHB:SHB+15 of the source vector are placed into vD.

Other registers altered:

• None

Figure 6-107 shows the usage of the vsldoi instruction. Each of the sixteen elements in the
vectors, vA, vB, and vD, is 8 bits long.

Figure 6-107. vsldoi—Shift Left by Bytes Specified

04 vD vA vB 0 SH 44

0 5 6 10 11 15 16 20 21 22 25 26 31

vA

vB

vD

SHB
6-136 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vslh vslh
Vector Shift Left Integer Half Word

vslh vD,vA,vB Form: VX

do i=0 to 127 by 16

sh ← (vB)i+12:i+15
vDi:i+15 ← (vA)i:i+15 <<ui sh

end

Each element is a half word. Each element in vA is shifted left by the number of bits
specified in the low-order 4 bits of the corresponding element in vB. Bits shifted out of bit
0 of the element are lost. Zeros are supplied to the vacated bits on the right. The result is
placed into the corresponding element of vD.

Other registers altered:

• None

Figure 6-108 shows the usage of the vslh instruction. Each of the eight elements in the
vectors, vA, vB, and vD, is 16 bits long.

Figure 6-108. vslh—Shift Bits Left in Eight Integer Elements (16-Bit)

04 vD vA vB 324

0 5 6 10 11 15 16 20 21 31

6 666666 vB

vA

vD

*6 = sh = Shift Count

*6

124 127

0...0

sh

0...00...00...00...00...00...00...0

*x
MOTOROLA Chapter 6. AltiVec Instructions 6-137

AltiVec Technology Programming Environments Manual
vslo vslo
Vector Shift Left by Octet

vslo vD,vA,vB Form: VX

shb ← (vB)121:124
vD ← (vA) <<ui (shb || 0b000)

The contents of vA are shifted left by the number of bytes specified in vB[121–124]. Bytes
shifted out of byte 0 are lost. Zeros are supplied to the vacated bytes on the right. The result
is placed into vD.

Other registers altered:

• None

Figure 6-109 shows the usage of the vslo instruction.

Figure 6-109. vslo—Left Byte Shift of Vector (128-Bit)

04 vD vA vB 1036

0 5 6 10 11 15 16 20 21 31

vB

vA

vD

• • • • • • • • • • *4 = shb = Shift Count

Don’t Care

121 124

0 00 00 00 0

*4
6-138 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vslw vslw
Vector Shift Left Integer Word

vslw vD,vA,vB Form: VX

do i=0 to 127 by 32

sh ← (vB)i+27:i+31
vDi:i+31 ← (vA)i:i+31 <<ui sh

end

Each element is a word. Each element in vA is shifted left by the number of bits specified
in the low-order 5 bits of the corresponding element in vB. Bits shifted out of bit 0 of the
element are lost. Zeros are supplied to the vacated bits on the right. The result is placed into
the corresponding element of vD.

Other registers altered:

• None

Figure 6-110 shows the usage of the vslw instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-110. vslw—Shift Bits Left in Four Integer Elements (32-Bit)

04 vD vA vB 388

0 5 6 10 11 15 16 20 21 31

666 vB

vA

vD

*6 = sh = Shift Count

*6

123 127

sh

000000000000000000

zeros

000000
MOTOROLA Chapter 6. AltiVec Instructions 6-139

AltiVec Technology Programming Environments Manual
vspltb vspltb
Vector Splat Byte

vspltb vD,vB,UIMM Form: VX

b ← UIMM*8
do i=0 to 127 by 8

vDi:i+7 ← (vB)b:b+7

end

Each element of vspltb is a byte.

The contents of element UIMM in vB are replicated into each element of vD.

Other registers altered:

• None

Programming note: The vector splat instructions can be used in preparation for performing
arithmetic for which one source vector is to consist of elements that all have the same value
(for example, multiplying all elements of a vector register by a constant).

Figure 6-111 shows the usage of the vspltb instruction. Each of the sixteen elements in the
vectors vB and vD is 8 bits long.

Figure 6-111. vspltb—Copy Contents to Sixteen Elements (8-Bit)

04 vD UIMM vB 524

0 5 6 10 11 15 16 20 21 31

vB

vD
6-140 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vsplth vsplth
Vector Splat Half Word

vsplth vD,vB,UIMM Form: VX

b ← UIMM*16
do i=0 to 127 by 16

vDi:i+15 ← (vB)b:b+15

end

Each element of vsplth is a half word.

The contents of element UIMM in vB are replicated into each element of vD.

Other registers altered:

• None

Programming note: The vector splat instructions can be used in preparation for performing
arithmetic for which one source vector is to consist of elements that all have the same value
(for example, multiplying all elements of a vector register by a constant).

Figure 6-112 shows the usage of the vsplth instruction. Each of the eight elements in the
vectors vB and vD is 16 bits long.

Figure 6-112. vsplth—Copy Contents to Eight Elements (16-Bit)

04 vD UIMM vB 588

0 5 6 10 11 15 16 20 21 31

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-141

AltiVec Technology Programming Environments Manual
vspltisb vspltisb
Vector Splat Immediate Signed Byte

vspltisb vD,SIMM Form: VX

do i=0 to 127 by 8

vDi:i+7 ← SignExtend(SIMM,8)

end

Each element of vspltisb is a byte.

The value of the SIMM field, sign-extended to the length of the element, is replicated into
each element of vD.

Other registers altered:

• None

Figure 6-113 shows the usage of the vspltisb instruction. Each of the sixteen elements in
the vector, vD, is 8 bits long.

Figure 6-113. vspltisb—Copy Value into Sixteen Signed Integer Elements (8-Bit)

04 vD SIMM 0000_0 780

0 5 6 10 11 15 16 20 21 31

SIMM

vD
6-142 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vspltish vspltish
Vector Splat Immediate Signed Half Word

vspltish vD,SIMM Form: VX

do i=0 to 127 by 16

vDi:i+15 ← SignExtend(SIMM,16)

end

Each element of vspltish is a half word.

The value of the SIMM field, sign-extended to the length of the element, is replicated into
each element of vD.

Other registers altered:

• None

Figure 6-114 shows the usage of the vspltish instruction. Each of the eight elements in the
vectors, vA, vB, and vD, is 16 bits long.

Figure 6-114. vspltish—Copy Value to Eight Signed Integer Elements (16-Bit)

04 vD SIMM 0000_0 844

0 5 6 10 11 15 16 20 21 31

SIMM

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-143

AltiVec Technology Programming Environments Manual
vspltisw vspltisw
Vector Splat Immediate Signed Word

vspltisw vD,SIMM Form: VX

do i=0 to 127 by 32

vDi:i+31 ← SignExtend(SIMM,32)

end

Each element of vspltisw is a word.

The value of the SIMM field, sign-extended to the length of the element, is replicated into
each element of vD.

Other registers altered:

• None

Figure 6-115 shows the usage of the vspltisw instruction. Each of the four elements in the
vector, and vD, is 32 bits long.

Figure 6-115. vspltisw—Copy Value to Four Signed Elements (32-Bit)

04 vD SIMM 0000_0 908

0 5 6 10 11 15 16 20 21 31

vD

SIMM
6-144 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vspltw vspltw
Vector Splat Word

vspltw vD,vB,UIMM Form: VX

b ← UIMM*32
do i=0 to 127 by 32

vDi:i+31 ← (vB)b:b+31

end

Each element of vspltw is a word.

The contents of element UIMM in vB are replicated into each element of vD.

Other registers altered:

• None

Programming note: The Vector Splat instructions can be used in preparation for performing
arithmetic for which one source vector is to consist of elements that all have the same value
(for example, multiplying all elements of a Vector Register by a constant).

Figure 6-116 shows the usage of the vspltw instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-116. vspltw—Copy contents to Four Elements (32-Bit)

04 vD UIMM vB 652

0 5 6 10 11 15 16 20 21 31

vD

UIMM
MOTOROLA Chapter 6. AltiVec Instructions 6-145

AltiVec Technology Programming Environments Manual
vsr vsr
Vector Shift Right

vsr vD,vA,vB Form: VX

sh ← (vB)125:127
t ← 1
do i = 0 to 127 by 8

t ← t & ((vB)i+5:i+7 = sh)
if t = 1 then vD ← (vA) >>ui sh
elsevD ← undefined

end

Let sh = vB[125–127]; sh is the shift count in bits (0≤sh≤7). The contents of vA are shifted
right by sh bits. Bits shifted out of bit 127 are lost. Zeros are supplied to the vacated bits on
the left. The result is placed into vD.

The contents of the low-order three bits of all byte elements in register vB must be identical
to vB[125-127]; otherwise the value placed into register vD is undefined.

Other registers altered:

• None

Programming notes:

A pair of vslo and vsl or vsro and vsr instructions, specifying the same shift count register,
can be used to shift the contents of a vector register left or right by the number of bits
(0–127) specified in the shift count register. The following example shifts the contents of
vX left by the number of bits specified in vY and places the result into vZ.

vslo VZ,VX,VY
vsl VZ,VZ,VY

A double-register shift by a dynamically specified number of bits (0–127) can be performed
in six instructions. The following example shifts (vW) || (vX) left by the number of bits
specified in vY and places the high-order 128 bits of the result into vZ.

vslo t1,VW,VY #shift high-order reg left
vsl t1,t1,VY
vsububm t3,V0,VY #adjust shift count ((V0)=0)
vsro t2,VX,t3 #shift low-order reg right
vsr t2,t2,t3
vor VZ,t1,t2 #merge to get final result

04 vD vA vB 708

0 5 6 10 11 15 16 20 21 31
6-146 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
Figure 6-117 shows the usage of the vsr instruction. Each of the sixteen elements in the
vectors, vA, vB, and vD, is 8 bits long.

Figure 6-117. vsr—Shift Bits Right for Vectors (128-Bit)

vB

vA

vD

• • • • • • • • • • *6 = sh = Shift Count

6*

125 127

0...0

sh
zeros
MOTOROLA Chapter 6. AltiVec Instructions 6-147

AltiVec Technology Programming Environments Manual
vsrab vsrab
Vector Shift Right Algebraic Byte

vsrab vD,vA,vB Form: VX

do i=0 to 127 by 8

sh ← (vB)i+2:i+7
vDi:i+7 ← (vA)i:i+7 >>si sh

end

Each element is a byte. Each element in vA is shifted right by the number of bits specified
in the low-order 3 bits of the corresponding element in vB. Bits shifted out of bit n-1 of the
element are lost. Bit 0 of the element is replicated to fill the vacated bits on the left. The
result is placed into the corresponding element of vD.

Other registers altered:

• None

Figure 6-118 shows the usage of the vsrab instruction. Each of the sixteen elements in the
vectors, vA, and vD, is 8 bits long.

Figure 6-118. vsrab—Shift Bits Right in Sixteen Integer Elements (8-Bit)

04 vD vA vB 772

0 5 6 10 11 15 16 20 21 31

666 66666 666666 vB

vA

vD

*6 = sh = Shift Count

*6

125 127

x..x

sh

6

x..xx..xx..xx..xx..xx..xx..xx..xx..xx..xx..xx..xx..xx..xx..x

*bit x *bit x = bit 0 of each element
6-148 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vsrah vsrah
Vector Shift Right Algebraic Half Word

vsrah vD,vA,vB Form: VX

do i=0 to 127 by 16

sh ← (vB)i+12:i+15
vDi:i+15 ← (vA)i:i+15 >>si sh

end

Each element is a half word. Each element in vA is shifted right by the number of bits
specified in the low-order 4 bits of the corresponding element in vB. Bits shifted out of bit
15 of the element are lost. Bit 0 of the element is replicated to fill the vacated bits on the
left. The result is placed into the corresponding element of vD.

Other registers altered:

• None

Figure 6-119 shows the usage of the vsrah instruction. Each of the eight elements in the
vectors, vA, and vD, is 16 bits long.

Figure 6-119. vsrah—Shift Bits Right for Eight Integer Elements (16-Bit)

04 vD vA vB 836

0 5 6 10 11 15 16 20 21 31

6 666666 vB

vA

vD

*6 = sh = Shift Count

*6

124 127

x...x

sh

x...xx...xx...xx...xx...xx...xx...x

*x *x = bit 0 of each element
MOTOROLA Chapter 6. AltiVec Instructions 6-149

AltiVec Technology Programming Environments Manual
vsraw vsraw
Vector Shift Right Algebraic Word

vsraw vD,vA,vB Form: VX

do i=0 to 127 by 32

sh ← (vB)i+27:i+31
vDi:i+31 ← (vA)i:i+31 >>si sh

end

Each element is a word. Each element in vA is shifted right by the number of bits specified
in the low-order 5 bits of the corresponding element in vB. Bits shifted out of bit 31 of the
element are lost. Bit 0 of the element is replicated to fill the vacated bits on the left. The
result is placed into the corresponding element of vD.

Other registers altered:

• None

Figure 6-120 shows the usage of the vsraw instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-120. vsraw—Shift Bits Right in Four Integer Elements (32-Bit)

04 vD vA vB 900

0 5 6 10 11 15 16 20 21 31

666 vB

vA

vD

*6 = sh = Shift Count

*6

123 127

sh

x...xx...xx....x

*x

x...x

*x = bit 0 of each element
6-150 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vsrb vsrb
Vector Shift Right Byte

vsrb vD,vA,vB Form: VX

do i=0 to 127 by 8

sh ← (vB)i+5:i+7
vDi:i+7 ← (vA)i:i+7 >>ui sh

end

Each element is a byte. Each element in vA is shifted right by the number of bits specified
in the low-order 3 bits of the corresponding element in vB. Bits shifted out of bit 7 of the
element are lost. Zeros are supplied to the vacated bits on the left. The result is placed into
the corresponding element of vD.

Other registers altered:

• None

Figure 6-121 shows the usage of the vsrb instruction. Each of the sixteen elements in the
vectors, vA, and vD, is 8 bits long.

Figure 6-121. vsrb—Shift Bits Right in Sixteen Integer Elements (8-Bit)

04 vD vA vB 516

0 5 6 10 11 15 16 20 21 31

666 66666 666666 vB

vA

vD

*6 = sh = Shift Count

*6

125 127

0..0

sh

6

0..00..00..00..00..00..00..00..00..00..00..00..00..00..00..0

zeros
MOTOROLA Chapter 6. AltiVec Instructions 6-151

AltiVec Technology Programming Environments Manual
vsrh vsrh
Vector Shift Right Half Word

vsrh vD,vA,vB Form: VX

do i=0 to 127 by 16

sh ← (vB)i+12:i+15
vDi:i+15 ← (vA)i:i+15 >>ui sh

end

Each element is a half word. Each element in vA is shifted right by the number of bits
specified in the low-order 4 bits of the corresponding element in vB. Bits shifted out of bit
15 of the element are lost. Zeros are supplied to the vacated bits on the left. The result is
placed into the corresponding element of vD.

Other registers altered:

• None

Figure 6-122 shows the usage of the vsrh instruction. Each of the eight elements in the
vectors, vA, and vD, is 16 bits long.

Figure 6-122. vsrh—Shift Bits Right for Eight Integer Elements (16-Bit)

04 vD vA vB 580

0 5 6 10 11 15 16 20 21 31

6 666666 vB

vA

vD

*6 = sh = Shift Count

*6

124 127

0...0

sh

0...00...00...00...00...00...00...0

zeros
6-152 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vsro vsro
Vector Shift Right Octet

vsro vD,vA,vB Form: VX

shb ← (vB)121:124
vD ← (vA) >>ui (shb || 0b000)

The contents of vA are shifted right by the number of bytes specified in vB[121–124]. Bytes
shifted out of vA are lost. Zeros are supplied to the vacated bytes on the left. The result is
placed into vD.

Other registers altered:

• None

Figure 6-123. vsro—Vector Shift Right Octet

04 vD vA vB 1100

0 5 6 10 11 15 16 20 21 31

vB

vA

vD

• • • • • • • • • • *5 = Shift Count

Don’t Care *5

121 124

0 00 00 00 0 0 0
MOTOROLA Chapter 6. AltiVec Instructions 6-153

AltiVec Technology Programming Environments Manual
vsrw vsrw
Vector Shift Right Word

vsrw vD,vA,vB Form: VX

do i=0 to 127 by 32

sh ← (vB)i+(27):i+31
vDi:i+31 ← (vA)i:i+31 >>ui sh

end

Each element is a word. Each element in vA is shifted right by the number of bits specified
in the low-order 5 bits of the corresponding element in vB. Bits shifted out of bit 31 of the
element are lost. Zeros are supplied to the vacated bits on the left. The result is placed into
the corresponding element of vD.

Other registers altered:

• None

Figure 6-124 shows the usage of the vsrw instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-124. vsrw—Shift Bits Right in Four Integer Elements (32-Bit)

04 vD vA vB 644

0 5 6 10 11 15 16 20 21 31

666 vB

vA

vD

*6 = sh = Shift Count

*6

123 127

sh

0...00...00...0

zeros

0...0
6-154 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vsubcuw vsubcuw
Vector Subtract Carryout Unsigned Word

vsubcuw vD,vA,vB Form: VX

do i=0 to 127 by 32

aop0:32← ZeroExtend((vA)i:i+31,33)
bop0:32← ZeroExtend((vB)i:i+31,33)
temp0:32← aop0:32 +int −bop0:32 +int 1
vDi:i+31← ZeroExtend(temp0,32)

end

Each unsigned-integer word element in vB is subtracted from the corresponding
unsigned-integer word element in vA. The complement of the borrow out of bit 0 of the
32-bit difference is zero-extended to 32 bits and placed into the corresponding word
element of vD.

Other registers altered:

• None

Figure 6-125 shows the usage of the vsubcuw instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

g

Figure 6-125. vsubcuw—Subtract Carryout of Four Unsigned Integer Elements
(32-Bit)

04 vD vA vB 1408

0 5 6 10 11 15 16 20 21 31

vB

vA

Zero-Ext

vD

- - - -
MOTOROLA Chapter 6. AltiVec Instructions 6-155

AltiVec Technology Programming Environments Manual
vsubfp vsubfp
Vector Subtract Floating Point

vsubfp vD,vA,vB Form: VX

do i=0 to 127 by 32

vDi:i+31 ← RndToNearFP32((vA)i:i+31 -fp (vB)i:i+31)

end

Each single-precision floating-point word element in vB is subtracted from the
corresponding single-precision floating-point word element in vA. The result is rounded to
the nearest single-precision floating-point number and placed into the corresponding word
element of vD.

If VSCR[NJ] = 1, every denormalized operand element is truncated to a 0 of the same sign
before the operation is carried out, and each denormalized result element truncates to a 0 of
the same sign.

Other registers altered:

• None

Figure 6-126 shows the usage of the vsubfp instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-126. vsubfp—Subtract Four Floating Point Elements (32-Bit)

04 vD vA vB 74

0 5 6 10 11 15 16 20 21 31

-fp-fp-fp-fp

vA

vB

vD
6-156 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vsubsbs vsubsbs
Vector Subtract Signed Byte Saturate

vsubsbs vD,vA,vB Form: VX

do i=0 to 127 by 8

aop0:8← SignExtend((vA)i:i+7,9)
bop0:8← SignExtend((vB)i:i+7,9)
temp0:8← aop0:8 +int −bop0:8 +int 1
vDi:i+7← SItoSIsat(temp0:8,8)

end

Each element is a byte. Each signed-integer element in vB is subtracted from the
corresponding signed-integer element in vA.

If the intermediate result is greater than (27-1) it saturates to (27-1) and if it is less than -27

it saturates to -27, where 8 is the length of the element.

The signed-integer result is placed into the corresponding element of vD.

Other registers altered:

• SAT

Figure 6-127 shows the usage of the vsubsbs instruction. Each of the sixteen elements in
the vectors, vA, vB, and vD, is 8 bits long.

Figure 6-127. vsubsbs—Subtract Sixteen Signed Integer Elements (8-Bit)

04 vD vA vB 1792

0 5 6 10 11 15 16 20 21 31

- ---------------

vA

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-157

AltiVec Technology Programming Environments Manual
vsubshs vsubshs
Vector Subtract Signed Half Word Saturate

vsubshs vD,vA,vB Form: VX

do i=0 to 127 by 16

aop0:16← SignExtend((vA)i:i+15,17)
bop0:16← SignExtend((vB)i:i+15,17)
temp0:16← aop0:16 +int -bop0:16 +int 1
vDi:i+15← SItoSIsat(temp0:16,16)

end

Each element is a half word. Each signed-integer element in vB is subtracted from the
corresponding signed-integer element in vA.

If the intermediate result is greater than (215-1) it saturates to (215-1) and if it is less than -215

it saturates to -215, where 16 is the length of the element.

The signed-integer result is placed into the corresponding element of vD.

Other registers altered:

• SAT

Figure 6-128 shows the usage of the vsubshs instruction. Each of the eight elements in the
vectors, vA, vB, and vD, is 16 bits long.

Figure 6-128. vsubshs—Subtract Eight Signed Integer Elements (16-Bit)

04 vD vA vB 1856

0 5 6 10 11 15 16 20 21 31

vA

vB

vD
6-158 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vsubsws vsubsws
Vector Subtract Signed Word Saturate

vsubsws vD,vA,vB Form: VX

do i=0 to 127 by 32

aop0:32← SignExtend((vA)i:i+31,33)
bop0:32← SignExtend((vB)i:i+31,33)
temp0:32← aop0:32 +int −bop0:32 +int 1
vDi:i+31← SItoSIsat(temp0:32,32)

end

Each element is a word. Each signed-integer element in vB is subtracted from the
corresponding signed-integer element in vA.

If the intermediate result is greater than (231-1) it saturates to (231-1) and if it is less than -231

it saturates to -231, where 32 is the length of the element.

The signed-integer result is placed into the corresponding element of vD.

Other registers altered:

• SAT

Figure 6-129 shows the usage of the vsubsws instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-129. vsubsws—Subtract Four Signed Integer Elements (32-Bit)

04 vD vA vB 1920

0 5 6 10 11 15 16 20 21 31

vA

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-159

AltiVec Technology Programming Environments Manual
vsububm vsububm
Vector Subtract Unsigned Byte Modulo

vsububm vD,vA,vB Form: VX

do i=0 to 127 by 8

vDi:i+7← (vA)i:i+7 +int −(vB)i:i+7

end

Each element of vsububm is a byte.

Each integer element in vB is subtracted from the corresponding integer element in vA. The
integer result is placed into the corresponding element of vD.

Other registers altered:

• None

Note the vsububm instruction can be used for unsigned or signed integers.

Figure 6-130 shows the usage of the vsububm instruction. Each of the sixteen elements in
the vectors, vA, vB, and vD, is 8 bits long.

Figure 6-130. vsububm—Subtract Sixteen Integer Elements (8-Bit)

04 vD vA vB 1024

0 5 6 10 11 15 16 20 21 31

- ---------------

vA

vB

vD
6-160 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vsububs vsububs
Vector Subtract Unsigned Byte Saturate

vsububs vD,vA,vB Form: VX

do i=0 to 127 by 8

aop0:8← ZeroExtend((vA)i:i+7,9)
bop0:8← ZeroExtend((vB)i:i+7,9)
temp0:8← aop0:8 +int −bop0:8 +int 1
vDi:i+7← SItoUIsat(temp0:8,8)

end

Each element is a byte. Each unsigned-integer element in vB is subtracted from the
corresponding unsigned-integer element in vA.

If the intermediate result is less than 0 it saturates to 0, where 8 is the length of the element.
The unsigned-integer result is placed into the corresponding element of vD.

Other registers altered:

• SAT

Figure 6-131 shows the usage of the vsububs instruction. Each of the sixteen elements in
the vectors, vA, vB, and vD, is 8 bits long.

Figure 6-131. vsububs—Subtract Sixteen Unsigned Integer Elements (8-Bit)

04 vD vA vB 1536

0 5 6 10 11 15 16 20 21 31

- ---------------

vA

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-161

AltiVec Technology Programming Environments Manual
vsubuhm vsubuhm
Vector Subtract Signed Half Word Modulo

vsubuhm vD,vA,vB Form: VX

do i=0 to 127 by 16

vDi:i+15← (vA)i:i+15 +int −(vB)i:i+15

end

Each element is a half word. Each integer element in vB is subtracted from the
corresponding integer element in vA. The integer result is placed into the corresponding
element of vD.

Other registers altered:

• None

Note the vsubuhm instruction can be used for unsigned or signed integers.

Figure 6-132 shows the usage of the vsubuhm instruction. Each of the eight elements in
the vectors, vA, vB, and vD, is 16 bits long.

Figure 6-132. vsubuhm—Subtract Eight Integer Elements (16-Bit)

04 vD vA vB 1088

0 5 6 10 11 15 16 20 21 31

vB

vD
6-162 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vsubuhs vsubuhs
Vector Subtract Signed Half Word Saturate

vsubuhs vD,vA,vB Form: VX

do i=0 to 127 by 16

aop0:16← ZeroExtend((vA)i:i+15,17)
bop0:16← ZeroExtend((vB)i:i+n:1,17)
temp0:16← aop0:n +int −bop0:16 +int 1
vDi:i+15← SItoUIsat(temp0:16,16)

end

Each element is a half word. Each unsigned-integer element in vB is subtracted from the
corresponding unsigned-integer element in vA.

If the intermediate result is less than 0 it saturates to 0, where 16 is the length of the element.
The unsigned-integer result is placed into the corresponding element of vD.

Other registers altered:

• SAT

Figure 6-133 shows the usage of the vsubuhs instruction. Each of the eight elements in the
vectors, vA, vB, and vD, is 16 bits long.

Figure 6-133. vsubuhs—Subtract Eight Signed Integer Elements (16-Bit)

04 vD vA vB 1600

0 5 6 10 11 15 16 20 21 31

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-163

AltiVec Technology Programming Environments Manual
vsubuwm vsubuwm
Vector Subtract Unsigned Word Modulo

vsubuwm vD,vA,vB Form: VX

do i=0 to 127 by 32

vDi:i+31← (vA)i:i+31 +int −(vB)i:i+31

end

Each element of vsubuwm is a word.

Each integer element in vB is subtracted from the corresponding integer element in vA. The
integer result is placed into the corresponding element of vD.

Other registers altered:

• None

Note the vsubuwm instruction can be used for unsigned or signed integers.

Figure 6-134 shows the usage of the vsubuwm instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-134. vsubuwm—Subtract Four Integer Elements (32-Bit)

04 vD vA vB 1152

0 5 6 10 11 15 16 20 21 31

vB

vD
6-164 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vsubuws vsubuws
Vector Subtract Unsigned Word Saturate

vsubuws vD,vA,vB Form: VX

do i=0 to 127 by 32

aop0:32← ZeroExtend((vA)i:i+31,33)
bop0:32← ZeroExtend((vB)i:i+31,33)
temp0:32← aop0:32 +int −bop0:32 +int 1
vDi:i+31← SItoUIsat(temp0:32,32)

end

Each element is a word. Each unsigned-integer element in vB is subtracted from the
corresponding unsigned-integer element in vA.

If the intermediate result is less than 0 it saturates to 0, where 32 is the length of the element.
The unsigned-integer result is placed into the corresponding element of vD.

Other registers altered:

• SAT

Figure 6-135 shows the usage of the vsubuws instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-135. vsubuws—Subtract Four Signed Integer Elements (32-Bit)

04 vD vA vB 1664

0 5 6 10 11 15 16 20 21 31

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-165

AltiVec Technology Programming Environments Manual
vsumsws vsumsws
Vector Sum Across Signed Word Saturate

vsumsws vD,vA,vB Form: VX

temp0:34 ← SignExtend((vB)96:127,35)
do i=0 to 127 by 32

temp0:34 ← temp0:34 +int SignExtend((vA)i:i+31,35)
vD ← 960 || SItoSIsat(temp0:34,32)

end

The signed-integer sum of the four signed-integer word elements in vA is added to the
signed-integer word element in bits of vB[96-127]. If the intermediate result is greater than
(231-1) it saturates to (231-1) and if it is less than -231 it saturates to -231. The signed-integer
result is placed into bits vD[96–127]. Bits vD[0–95] are cleared.

Other registers altered:

• SAT

Figure 6-136 shows the usage of the vsumsws instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-136. vsumsws—Sum Four Signed Integer Elements (32-Bit)

04 vD vA vB 1928

0 5 6 10 11 15 16 20 21 31

+

vA

vB

vD
6-166 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vsum2sws vsum2sws
Vector Sum Across Partial (1/2) Signed Word Saturate

vsum2sws vD,vA,vB Form: VX

do i=0 to 127 by 64

temp0:33 ← SignExtend((vB)i+32:i+63,34)
do j=0 to 63 by 32

temp0:33 ← temp0:33 +int SignExtend((vA)i+j:i+j+31,34)

end

vDi:i+63 ← 320 || SItoSIsat(temp0:33,32)

end

The signed-integer sum of the first two signed-integer word elements in register vA is added
to the signed-integer word element in vB[32–63]. If the intermediate result is greater than
(231-1) it saturates to (231-1) and if it is less than -231 it saturates to -231. The signed-integer
result is placed into vD[32–63]. The signed-integer sum of the last two signed-integer word
elements in register vA is added to the signed-integer word element in vB[96-127]. If the
intermediate result is greater than (231-1) it saturates to (231-1) and if it is less than -231 it
saturates to -231. The signed-integer result is placed into vD[96–127]. The register
vD[0–31,64–95] are cleared to 0.

Other registers altered:

• SAT

Figure 6-137 shows the usage of the vsum2sws instruction. Each of the four elements in
the vectors, vA, vB, and vD, is 32 bits long.

Figure 6-137. vsum2sws—Two Sums in the Four Signed Integer Elements (32-Bit)

04 vD vA vB 1672

0 5 6 10 11 15 16 20 21 31

+

vA

vB

vD0 0 0 0 0 0 0 00 0 0 0 0 0 0 0

+

MOTOROLA Chapter 6. AltiVec Instructions 6-167

AltiVec Technology Programming Environments Manual
vsum4sbs vsum4sbs
Vector Sum Across Partial (1/4) Signed Byte Saturate

vsum4sbs vD,vA,vB Form: VX

do i=0 to 127 by 32

temp0:32 ← SignExtend((vB)i:i+31,33)
 do j=0 to 31 by 8

temp0:32 ← temp0:32 +int SignExtend((vA)i+j:i+j+7,33)

end

vDi:i+31 ← SItoSIsat(temp0:32,32)

end

For each word element in vB the following operations are performed in the order shown.

• The signed-integer sum of the four signed-integer byte elements contained in the
corresponding word element of register vA is added to the signed-integer word
element in register vB.

• If the intermediate result is greater than (231-1) it saturates to (231-1) and if it is less
than -231 it saturates to -231.

• The signed-integer result is placed into the corresponding word element of vD.

Other registers altered:

• SAT

Figure 6-138 shows the usage of the vsum4sbs instruction. Each of the sixteen elements in
the vector vA, is 8 bits long. Each of the four elements in the vectors vB and vD is 32 bits
long.

Figure 6-138. vsum4sbs—Four Sums in the Integer Elements (32-Bit)

04 vD vA vB 1800

0 5 6 10 11 15 16 20 21 31

vA

vB

vD

++++
6-168 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vsum4shs vsum4shs
Vector Sum Across Partial (1/4) Signed Half Word Saturate

vsum4shs vD,vA,vB Form: VX

do i=0 to 127 by 32

temp0:32 ← SignExtend((vB)i:i+31,33)
do j=0 to 31 by 16

temp0:32 ← temp0:32 +int SignExtend((vA)i+j:i+j+15,33)

end

vDi:i+31 ← SItoSIsat(temp0:32,32)

end

For each word element in register vB the following operations are performed, in the order
shown.

• The signed-integer sum of the two signed-integer halfword elements contained in
the corresponding word element of register vA is added to the signed-integer word
element in vB.

• If the intermediate result is greater than (231-1) it saturates to (231-1) and if it is less
than -231 it saturates to -231.

• The signed-integer result is placed into the corresponding word element of vD.

Other registers altered:

• SAT

Figure 6-139 shows the usage of the vsum4shs instruction. Each of the eight elements in
the vector vA, is 16 bits long. Each of the four elements in the vectors vB and vD is 32 bits
long.

Figure 6-139. vsum4shs—Four Sums in the Integer Elements (32-Bit)

04 vD vA vB 1608

0 5 6 10 11 15 16 20 21 31

vA

vB

vD

++++
MOTOROLA Chapter 6. AltiVec Instructions 6-169

AltiVec Technology Programming Environments Manual
vsum4ubs vsum4ubs
Vector Sum Across Partial (1/4) Unsigned Byte Saturate

vsum4ubs vD,vA,vB Form: VX

do i=0 to 127 by 32

temp0:32 ← ZeroExtend((vB)i:i+31,33)
do j=0 to 31 by 8

temp0:32 ← temp0:32 +int ZeroExtend((vA)i+j:i+j+7,33)

end

vDi:i+31 ← UItoUIsat(temp0:32,32)

end

For each word element in vB the following operations are performed in the order shown.

• The unsigned-integer sum of the four unsigned-integer byte elements contained in
the corresponding word element of register vA is added to the unsigned-integer
word element in register vB.

• If the intermediate result is greater than (232-1) it saturates to (232-1).

• The unsigned-integer result is placed into the corresponding word element of vD.

Other registers altered:

• SAT

Figure 6-140 shows the usage of the vsum4ubs instruction. Each of the four elements in
the vector vA, is 8 bits long. Each of the four elements in the vectors vB and vD is 32 bits
long.

Figure 6-140. vsum4ubs—Four Sums in the Integer Elements (32-Bit)

04 vD vA vB 1544

0 5 6 10 11 15 16 20 21 31

vA

vB

vD

++++
6-170 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vupkhpx vupkhpx
Vector Unpack High Pixel16

vupkhpx vD,vB Form: VX

do i=0 to 63 by 16

vDi*2:(i*2)+7← SignExtend((vB)i,8)
vD(i*2)+8:(i*2)+15← ZeroExtend((vB)i+1:i+5,8)
vD(i*2)+16:(i*2)+23← ZeroExtend((vB)i+6:i+10,8)
vD(i*2)+24:(i*2)+31← ZeroExtend((vB)i+11:i+15,8)

end

Each halfword element in the high-order half of register vB is unpacked to produce a 32-bit
value as described below and placed, in the same order, into the four words of vD.

A halfword is unpacked to 32 bits by concatenating, in order, the results of the following
operations.

• sign-extend bit 0 of the halfword to 8 bits

• zero-extend bits 1–5 of the halfword to 8 bits

• zero-extend bits 6–10 of the halfword to 8 bits

• zero-extend bits 11–15 of the halfword to 8 bits

Other registers altered:

• None

The source and target elements can be considered to be 16-bit and 32-bit "pixels"
respectively, having the formats described in the programming note for the Vector Pack
Pixel instruction.

Figure 6-141 shows the usage of the vupkhpx instruction. Each of the eight elements in the
vectors, vB, is 16 bits long. Each of the four elements in the vectors, vD, is 32 bits long.

Figure 6-141. vupkhpx—Unpack High-Order Elements (16 bit) to Elements (32-Bit)

04 vD 0_0000 vB 846

0 5 6 10 11 15 16 20 21 31

vB

vD000 000 000 000
MOTOROLA Chapter 6. AltiVec Instructions 6-171

AltiVec Technology Programming Environments Manual
vupkhsb vupkhsb
Vector Unpack High Signed Byte

vupkhsb vD,vB Form: VX

do i=0 to 63 by 8

vDi*2:(i*2)+15 ← SignExtend((vB)i:i+7,16)

end

Each signed integer byte element in the high-order half of register vB is sign-extended to
produce a 16-bit signed integer and placed, in the same order, into the eight halfwords of
register vD.

Other registers altered:

• None

Figure 6-142 shows the usage of the vupkhsb instruction. Each of the sixteen elements in
the vectors, vB, is 8 bits long. Each of the eight elements in the vectors, vD, is 16 bits long.

Figure 6-142. vupkhsb—Unpack HIgh-Order Signed Integer Elements (8-Bit) to
Signed Integer Elements (16-Bit)

04 vD 0_0000 vB 526

0 5 6 10 11 15 16 20 21 31

SSSSSSSSSSSSSSSS

vB

vD
6-172 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vupkhsh vupkhsh
Vector Unpack High Signed Half Word

vupkhsh vD,vB Form: VX

do i=0 to 63 by 16

vDi*2:(i*2)+31 ← SignExtend((vB)i:i+15,32)

end

Each signed integer halfword element in the high-order half of register vB is sign-extended
to produce a 32-bit signed integer and placed, in the same order, into the four words of
register vD.

Other registers altered:

• None

Figure 6-143 shows the usage of the vupkhsh instruction. Each of the eight elements in the
vectors vB and vD is 16 bits long.

Figure 6-143. vupkhsh—Unpack Signed Integer Elements (16-Bit) to Signed Integer
Elements (32-Bit)

04 vD 0_0000 vB 590

0 5 6 10 11 15 16 20 21 31

vB

vDSSSSSSSSSSSSSSSS
MOTOROLA Chapter 6. AltiVec Instructions 6-173

AltiVec Technology Programming Environments Manual
vupklpx vupklpx
Vector Unpack Low Pixel16

vupklpx vD,vB Form: VX

do i=0 to 63 by 16

vDi*2:(i*2)+7← SignExtend((vB)i+64,8)
vD(i*2)+8:(i*2)+15← ZeroExtend((vB)i+65:i+69,8)
vD(i*2)+16:(i*2)+23← ZeroExtend((vB)i+70:i+74,8)
vD(i*2)+24:(i*2)+31← ZeroExtend((vB)i+75:i+79,8)

end

Each halfword element in the low-order half of register vB is unpacked to produce a 32-bit
value as described below and placed, in the same order, into the four words of register vD.

A halfword is unpacked to 32 bits by concatenating, in order, the results of the following
operations.

• sign-extend bit 0 of the halfword to 8 bits

• zero-extend bits 1–5 of the halfword to 8 bits

• zero-extend bits 6–10 of the halfword to 8 bits

• zero-extend bits 11–15 of the halfword to 8 bits

Other registers altered:

• None

Programming note: Notice that the unpacking done by the Vector Unpack Pixel instructions
does not reverse the packing done by the Vector Pack Pixel instruction. Specifically, if a
16-bit pixel is unpacked to a 32-bit pixel which is then packed to a 16-bit pixel, the resulting
16-bit pixel will not, in general, be equal to the original 16-bit pixel (because, for each
channel except the first, Vector Unpack Pixel inserts high-order bits while Vector Pack Pixel
discards low-order bits).

Figure 6-144 shows the usage of the vupklpx instruction. Each of the eight elements in the
vectors, vB, is 16 bits long. Each of the four elements in the vectors, vD, is 32 bits long.

Figure 6-144. vupklpx—Unpack Low-order Elements (16-Bit) to Elements (32-Bit)

04 vD 0_0000 vB 974

0 5 6 10 11 15 16 20 21 31

vB

vD000000000 000000
6-174 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vupklsb vupklsb
Vector Unpack Low Signed Byte

vupklsb vD,vB Form: VX

do i=0 to 63 by 8

vDi*2:(i*2)+15 ← SignExtend((vB)i+64:i+71,16)

end

Each signed integer byte element in the low-order half of register vB is sign-extended to
produce a 16-bit signed integer and placed, in the same order, into the eight halfwords of
register vD.

Other registers altered:

• None

Figure 6-145 shows the usage of the vaddubs instruction. Each of the sixteen elements in
the vectors vB and vD is 8 bits long.

Figure 6-145. vupklsb—Unpack Low-Order Elements (8-Bit) to Elements (16-Bit)

04 vD 0_0000 vB 654

0 5 6 10 11 15 16 20 21 31

vB

vDSSSSSSSSSSSSSSSS
MOTOROLA Chapter 6. AltiVec Instructions 6-175

AltiVec Technology Programming Environments Manual
vupklsh vupklsh
Vector Unpack Low Signed Half Word

vupklsh vD,vB Form: VX

do i=0 to 63 by 16

vDi*2:(i*2)+31 ← SignExtend((vB)i+64:i+79,32)

end

Each signed integer half word element in the low-order half of register vB is sign-extended
to produce a 32-bit signed integer and placed, in the same order, into the four words of
register vD.

Other registers altered:

• None

Figure 6-146 shows the usage of the vupklpx instruction. Each of the eight elements in the
vectors, vA, vB, and vD, is 16 bits long.

Figure 6-146. vupklsh—Unpack Low-Order Signed Integer Elements (16-Bit) to
Signed Integer Elements (32-Bit)

04 vD 0_0000 vB 718

0 5 6 10 11 15 16 20 21 31

vB

vDSSSSSSSSSSSSSSSS
6-176 AltiVec Technology Programming Environments Manual MOTOROLA

AltiVec Instruction Set
vxor vxor
Vector Logical XOR

vxor vD,vA,vB Form: VX

vD ← (vA) ⊕ (vB)

The contents of vA are XORed with the contents of register vB and the result is placed into
register vD.

Other registers altered:

• None

Figure 6-147 shows the usage of the vxor instruction.

Figure 6-147. vxor—Bitwise XOR (128-Bit)

04 vD vA vB 1220

0 5 6 10 11 15 16 20 21 31

⊕

vA

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-177

